InterviewSolution
Saved Bookmarks
| 1. |
यदि ` y= tan ^(-1) ((x^(1//3)+a^(1//3))/(1-x^(1//3)a^(1//3)))` तब ` (dy)/(dx) ` का मान ज्ञात कीजिए| |
|
Answer» `y= tan ^(-1) ((x^(1//3)+a^(1//3))/( a-x^(1//3)a^(1//3)))` माना `x^(1//3) =tan theta ` तथा ` a^(1//3) =tan phi ,` तब `y=tan ^(-1) ((tan theta + tanphi )/(1-tan theta tan phi ))= tan ^(-1) [tan (theta +phi ]` ` y= theta +phi=tan ^(-1)(x^(1//3) )+tan ^(-1) (a^(1//3))` ` therefore " "(dy)/(dx) =(d)/(dx) {tan ^(-1) (x^(1//3)) +tan ^(-1) (a^(1//3))}` ` " "= (d)/(dx) {tan ^(-1) (x^(1//3))} +(d)/(dx) {tan ^(-1) (a^(1//3))}` ` =(1)/(1+x^(2//3) )*(1)/(3)x ^(-2//3) +0 =(1)/(3x^(2//3)(1+x^(2//3)))` |
|