1.

यदि `y=(tan^(-1)x)^(2)` है, तो दर्शाइए कि `(x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2` है।

Answer» `y=(tan^(-1)x)^(2)`
`rArr" "(dy)/(dx)=2 tan^(-1)x.(1)/(1+x^(2))`
`rArr (1+x^(2))(dy)/(dx) = 2 tan^(-1)x`
पुनः x के सापेक्ष अवकलन करने पर
`(1+x^(2))(d^(2)y)/(dx^(2))+2y(dy)/(dx)=(2)/(1+x^(2))`
`rArr" "(1+x^(2))^(2)(d^(2)y)/(dx^())+2x(1+x^(2))(dy)/(dx)=2`
`rArr (1+x^(2))^(2)(d^(2)y)/(x^(2))+2x(1+x^(2))(dy)/(dx)-2=0` यही दर्शाना था ।


Discussion

No Comment Found