InterviewSolution
Saved Bookmarks
| 1. |
`|z_(1)+z_(2)|=|z_(1)|+|z_(2)|` is possible, ifA. `z_(2) = barz_(1)`B. `z_(2)=(1)/(z_(1))`C. arg`(z_(1))=arg(z_(2))`D. `|z_(1)|+|z_(2)|` |
|
Answer» Correct Answer - C Given that, `rArr |r_(1)(costheta_(1)+isintheta_(1))+r_(2)(costheta_(2)+isintheta_(2))|=r_(1)(costheta_(1)+isintheta_(2))|+r_(2)(costheta_(2) +isintheta_(2))|` `rArr |r_(1)(costheta_(1)+r_(2)costheta)+i(r_(1)sintheta_(1)+r_(2)sintheta_(2)|=r_(1)+r_(2)` `rArr sqrt(r_(1)^(2)cos^(2)theta_(1)+r_(2)^(2)costheta+2r_(1)r_(2)costheta_(1)costheta_(2) + r_(1)^(2)sin^(2)theta_(1)+r_(2)^(2)sin^(2)theta_(2))` `rArr sqrt(+2r_(1)r_(2)sintheta_(1)+sintheta_(2))=r_(1)+r_(2)` `rArr sqrt(r_(1)^(2)+r_(2)^(2)+ 2r_(1)r_(2)[ cos(theta_(1)-theta_(2))]=r_(1)+r_(2)` On squaring both sides, we get ` r_(1)^(2)+r_(2)^(2)+ 2r_(1)r_(2) cos(theta_(1)-theta_(2))=r_(1)+r_(2)+2r_(1)r_(2)` `rArr 2r_(1)r_(2)[1 -cos(theta_(1)-theta_(2))]=0` `rArr 1-cos(theta_(1)-theta_(2))=1` `rArr cos(theta _(1)-theta_(2)) = cos 0^(@)` `rArr theta_(1)= theta_(2)` arg`(z_(1)) = arg (z_(2)) |
|