| 1. |
Z.= (2 x + a) (2 y + b) |
|
Answer» Answer: Experimental or Empirical Probability for an event P(E):-
\boxed{\sf P(E) \: = \: \dfrac{Number \: of \: trails \: in \: which \: the \: event \: happened}{Total \: number \: of \: trails}} P(E)= Totalnumberoftrails Numberoftrailsinwhichtheeventhappened
\GREEN{\textsf{\underline{\underline{Theoretical or Classical Probability for an event P(T):-}}}} Theoretical or Classical Probability for an event P(T):-
\boxed{\sf P(T) \: = \: \dfrac{Number \: of \: OUTCOMES \: favourable \: to \: T}{Number \: of \: all \: possible \: outcomes \: of \: the \: experiment}} P(T)= Numberofallpossibleoutcomesoftheexperiment NumberofoutcomesfavourabletoT
\PURPLE{\textsf{\underline{\underline{Complementary EVENTS:-}}}} Complementary Events:-
\boxed{\sf P(E) \: + \: P(not \: E) \: = \: 1.} P(E)+P(notE)=1.
\pink{\textsf{\underline{\underline{Probability of an event LIES between:-}}}} Probability of an event lies between:-
\boxed{\sf 0\: ≤\: P(E) \: ≤ \: 1.} 0≤P(E)≤1.
\red{\textsf{\underline{\underline{Probability of a sure event = 1.}}}} Probability of a sure event = 1.
\green{\textsf{\underline{\underline{Probability of a impossible event = 0.}}}} Probability of a impossible event = 0.
|
|