 
                 
                InterviewSolution
 Saved Bookmarks
    				This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. | If `vec x` and `vec y` are two non-collinear vectors and ABC is a triangle with side lengths a,b and c satisfying (20a-15b)`vec x` + (15b-12c)`vec y` + (12c-20a)`vec x xx vec y` is:A. an acute angle triangleB. an obtuse angle triangleC. a right angle triangleD. an isosceles triangle | 
| Answer» Correct Answer - C | |
| 52. | If ` vec A O+ vec O B= vec B O+ vec O C`, prove that `A , B , C`are collinearpoints. | 
| Answer» It is given that, `vec(AO)+vec(OB) = vec(BO)+vec(OC)` `=>vec(AB) = vec(BC)` Adding `vec(BC)` both sides, `=> vec(AB)+vec(BC) = 2vec(BC)` `=>vec(AC) = 2vec(BC)` As, these two vectors pass from same point and are in same direction and one is double of other, it means `A`,`B` and `C` are collinear. | |
| 53. | Five forces ` vec A B`, ` vec A C`, ` vec A D`, ` vec A E`and ` vec A F`act at the vertex of a regular hexagon `A B C D E Fdot`Prove that the resultant is `6 vec A O`, where `O`is the centre of heaagon. | 
| Answer» `vec(AB)+vec(BO)=vec(AO)` `vec(AC)+vec(CO)=vec(AO)` `vec(AD)+vec(DO)=vec(AO)` `vec(AE)+vec(EO)=vec(AD)` `vec(AF)+vec(FO)=vec(AO)` `(vec(AB)+vec(AC)+vec(AD)+vec(AB)+vec(AF))+(vec(BO)+vec(CO)+vec(DO)+vec(EO)+vec(FO))=5vec(AO)` `x+vec(AO)=5vec(AO)` `x=6vec(AO)`. | |
| 54. | Show that thefour points `A ,B , Ca n dD`with positionvectors ` vec a , vec b , vec c`and ` vec d`respectivelyare coplanar if and only if `3 vec a-2 vec b+ vec c-2 vec d=0.` | 
| Answer» Position vectors, `veca,vecb,vecc and vec d` are coplanar if, `xveca+yvecb+zvecc+wvecd = vec0->(1)` and `x+y+z+w = 0` If we put, ` x = 3, y = -2, z = 1 and w = -2`, Then, `x+y+z+w = 0` If we put these values in (1), `3veca-2vecb+vecc-2vecd = vec0.` Thus, these `4` vectors are coplanar if `3veca-2vecb+vecc-2vecd = vec0.` | |
| 55. | Suppose that `vec p , vec q and vec r ` non- coplanar vectors in `R^(3)` . Let the components of a vector `vec s " along " vec p , vec q and vec r ` be 4, 3 and 5 respectively. If the components of this vectors `vec s " along " -vec p + vec q + vec r , vec p - vec q + vec r and - vec p - vecq + vec r ` are x , y and z respectively, then the value of `2x-y+z,` isA. 7B. 8C. 9D. 6 | 
| Answer» Correct Answer - C It is given that the components of vectors `vecs " along " vecp, vec q and vec r ` are 4, 3 and 5 respectively. `therefore vecs = 4vec p + 3 vecq + 5 vec r " " ` …(i) The components of `vec s ` along `-vec p + vec q + vec r , vec p - vec q + vec r and - vec p - vec q + vec r` and x, y and z respectively. ` therefore vec s = x (- vec p + vec q + vec r ) +y( vec p - vec q + vec r ) + z ( - vec p - vec q + vec r ) ` `rArr vec s = (-x+y-z) vec p + (x-y-z) vec q + (x+y+z) vec r " " ` ...(ii) From (i) and (ii) , we obtain `-x+y-z=4, x-y-z=3 and x+y+z=5` Solving these equations, we obtain `x=4, y=(9)/(2), z=(7)/(2)` `therefore 2x+y+z=8+(9)/(2)-(7)/(2)=9.` | |
| 56. | `veca , vec b , vec c ` are non-coplanar vectors and ` x vec a + y vec b + z vec c = vec 0` thenA. at least of one of x, y, z is zeroB. x, y, z are necessarily zeroC. none of them are zeroD. none of these | 
| Answer» Correct Answer - B | |
| 57. | Prove that a necessaryand sufficient condition for three vectors ` vec a , vec b`and ` vec c`to becoplanar is that there exist scalars `l , m , n`not all zerosimultaneously such that `l vec a+m vec b+n vec c= vec0dot` | 
| Answer» Here, it is given that , `lveca+mvecb+nvecc = 0` If we put, `l =-1 , m = x and n = y`, then, `-veca +xvecb+yvecc = 0` `=> veca = xvecb+yvecc`, which is the neccessary condition for all three vectors to be coplanar. Now, `lveca+mvecb+nvecc = 0` `=>lveca = -mvecb-nvecc` `=>veca = -m/lvecb-n/lvecc`, which is the sufficient condition for all three vectors to be coplanar. | |
| 58. | Forces `3 O vec A , 5 O vec B ` act along OA and OB. If their resultant passes through C on AB, thenA. C is a mid-point of ABB. C divides AB in the ratio `2:1`C. `3 AC = 5 CB`D. `2 AC = 3 CB` | 
| Answer» Correct Answer - C | |