Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

801.

Show that (3x – 2y)2 + 24xy = (3x + 2y)2.

Answer»

LHS

(3x – 2y)2 + 24xy

= [(3x)2 – 2(3x) (2y) + (2y)2] + 24xy

= (9x2 – 12xy + 4y2) + 24xy

= 9x2 – 12xy + 24xy + 4y2

= 9x2 + 12xy + 4y2

= (3x)2 + 2 (3x) (2y) + (2y)2

= (3x + 2y)2 (Using identity I)

= RHS

802.

Find the coefficient of x2 in -3/7 x2y2 .

Answer»

The coefficient of x2 in -3/7x2y2 = -3/7 y2.

803.

Coefficient of x2 in 5x2 will be :(A) 1(B) 4(C) 0(D) 5

Answer»

Coefficient of x2 in 5x2 will be 5.

804.

Write the coefficient of x2 in the following:(i) −3x2(ii) 5x2yz(iii) 5/7x2z(iv) (-3/2) ax2 + yx

Answer»

(i) Given −3x2

The numerical coefficient of x2 is -3.

(ii) Given 5x2yz

The numerical coefficient of x2 is 5yz.

(iii) Given 5/7x2z

The numerical coefficient of x2 is 57z.

(iv) Given (-3/2) ax2 + yx

The numerical coefficient of x2 is – (3/2) a.

805.

Rakesh’s age is less than Sania’s age by 5 years. The sum of their ages is 27 years. How old are they?

Answer»

Let the age of Rakesh be x years. 

∴ Sania’s age = (x + 5) years. 

According to the given condition,

x + (x + 5) = 27 

∴ 2x + 5 = 27 

∴ 2x = 27 – 5 

∴ 2x = 22

∴ x = 22/2 = 11

Sania’s age = x + 5 = 11 + 5 = 16 years

∴ The ages of Rakesh and Sania are 11 years and 16 years respectively.

806.

Rohan’s mother gave him Rs. 3xy2 and his father gave him Rs. 5(xy2 + 2). Out of this money he spent Rs. (10 – 3xy2) on his birthday party. How much money is left with him?

Answer»

Given, amount given to Rohan by his mother =Rs. 3xy2 and amount given to Rohan by his father =Rs. 5(xy2 + 2)

∴ Total amount Rohan have = [(3xy2)+(5xy2 + 10)]

= Rs. [3xy2 + 5xy2 + 10]

= Rs. (8xy2 + 10)

Total amount spent by Rohan =Rs. (10 – 3xy2)

∴After spending, Rohan have left money

807.

State whether the algebraic expression given below is monomial, binomial, trinomial or multinomial.(i) y2(ii) 4y — 7z(iii) 1 + x + x2(iv) 7mn(v) a2 + b2(vi) 100 xyz(vii) ax + 9(viii) p2 – 3pq + r(ix) 3y2 – x2y2 + 4x(x) 7x2 – 2xy + 9y2 – 11

Answer»
Algebraic ExpressionIts name
(i) y2Monomial
(ii) 4y – 7zBinomial
(iii) 1 + x + x2Trinomial
(iv) 7mnMonomial
(v) a2 + b2Binomial
(vi) 100 xyzMonomial
(vii) ax + 9Binomial
(viii) p2 – 3pq + rTrinomial
(ix) 3y2 – x2y2 + 4xTrinomial
808.

Add x2 + 2xy + y2 to the sum of x2 – 3y2and 2x2 – y2 + 9.

Answer»

Given x+ 2xy + y2, x2 – 3y2and 2x– y2 + 9.

First we have to find the sum of x2 – 3y2 and 2x2 – y2 + 9

= (x2 – 3y2) + (2x2 – y2 + 9)

= x2 + 2x2 – 3y2 – y2+ 9

= 3x2 – 4y2 + 9

Now, required expression = (x2 + 2xy + y2) + (3x2 – 4y2 + 9)

= x2 + 3x2 + 2xy + y2 – 4y2 + 9

= 4x2 + 2xy  – 3y2+ 9

809.

Write the definition of Algebra?

Answer»

Algebra is one of the broad parts of mathematics, together with number theory, geometry, and analysis. The more basic parts of algebra are called elementary algebra; the more abstract parts are called abstract algebra or modern algebra.

810.

The common factor of 3ab and 2cd is(a) 1 (b) – 1 (c) a (d) c

Answer»

(a) 1

Considering the two monomials 3ab and 2cd there is no common factor except 1.