Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

701.

Find the errors and correct them in the following :The value of following when a = – 3 : a2 + 3a = (- 3)2 + 3(- 3) = 9 + 0 = 9

Answer»

a2 + 3a = (- 3)2 + 3(- 3) (when a = – 3) 

= (- 3 × – 3) – 9

(Error is 3(- 3) = 0) 

= 9 – 9 = 0

702.

Find the errors and correct them in the following :The value of following when a = – 3 : 3 – a = 3 – 3 = 0

Answer»

3 – a = 3 – (- 3) (when a = – 3) 

= 3 + 3 = 6 

(Error is – (- 3) = – 3)

703.

Find the product.(P + 2) (P – 2) (P2 + 4)

Answer»

(P + 2) (P – 2) (P2 + 4) 

Identity (a + b)(a – b) = a2 – b2 

= (P2 – 22)(P2+ 4) 

= (P2 – 4)(P2 + 4) 

= (P2)2 – 42 

= P4 – 16

704.

Find the errors and correct them in the following :The value of following when a = – 3 : a3 – a2 – 3 = (- 3)3 – (-3)2 – 3 = – 9 + 6 – 3 = – 6

Answer»

a3 – a2 – 3 

= (- 3)3 – (- 3)2 – 3 (when a = – 3) 

= (- 3 × – 3 × – 3) – (- 3 × – 3) – 3 

= – 27 – (9) – 3 

(Error is (- 3)3 = – 9 and (- 3)2 = 6) 

= – 27 – 9 – 3 = – 39

705.

Write numeric and algebraic terms in the expression :  5x2 + 3y + 7

Answer»

Given expression is 5x2 + 3y + 7

Numerical terms = 7 

Algebraic terms = 5x2 , 3y

706.

Find the product.(2a + 3)(2a – 3) (4a2 + 9)

Answer»

(2a + 3)(2a – 3) (4a2 + 9) 

Identity (a + b)(a-b) = a2 – b2 

= [((2a)2 – 32)(4a2+9)2 

= (4a2 – 9)(4a2 + 9) 

= (4a2)2 – 92 

= 16a4 – 81

707.

Find the value of the expression (9x2 + 24x + 16), when x = 12.

Answer»

Given,

(9x2 + 24x + 16)

x = 12

So, we can also write it as;

= (3x)2 + 2(3x)(4) + (4)2

→ By the formula (a + b)2 we get,

= (3x + 4)

= [3 (12) + 4]2 

= [36 + 4]

= [40]2 = 1600

Hence the value of the expression is 1600 when x =12.

708.

Find the product.(x – 3)(x + 3) (x2 + 9)

Answer»

(x – 3)(x + 3) (x2 + 9) 

Identity(a + b)(a-b) = a2 – b2 

= (x2 – 32)(x2 + 9) 

= (x2 – 9)(x2 + 9) 

= (x2)2– 92 

= x4 – 81

709.

How many number of terms are there in each of the following expressions ? (i) 5x2 + 3y + 7(ii) 5x2y + 3(iii) 3x2y(iv) 5x – 7(v) 7x3 – 2x

Answer»

(i) Given expression is 5x2 + 3y + 7

Number of terms = 3

(ii) Given expression is 5x2y + 3

Number of terms = 2

(iii) Given expression is 3x2y

Number of terms = 1

(iv) Given expression is 5x – 7

Number of terms = 2

(v) Given expression is 7x3 – 2x

Number of terms = 2

710.

Find the product 24x2(1-2x) and evaluate its value for x=3

Answer»

24x2 (1 – 2x)

= 24x2 – 48x3

According to question,

When x = 3

= 24x2 – 48x3

= 24 (3)2 – 48 (3)3

= 24 (9) – 48 (27)

= 216 – 1296

= -1080

711.

If x = – 1 what is the value of x2 – 1?A) 1B) 0C) – 1D) 2

Answer»

Correct option is B) 0

x2 - 1 = (-1)2 - 1 = 1 - 1 = 0

712.

Evaluate these using identity :102 × 98

Answer»

102 × 98 = (100+ 2) (100 – 2) 

Identity (a + b)(a – b) = a2 – b2 

Here a = 100, b= 2 

(100 + 2)(100 – 2) = 1002 – 22 

=10000 – 4 

102 × 98 = 9996

713.

Evaluate these using identity :8.5 × 9.5

Answer»

8.5 × 9.5 = (9 – 0.5) (9 + 0.5) 

Here a = 9, b 

= 0.5 (9 – 0.5)(9 + 0.5) 

= (92) – (0.5)2 

= 81 – 0.25 

= 80.75

714.

Place the last two terms of the following expressions in parentheses preceded by a minus sign:(i) x + y – 3z + y (ii) 3x – 2y – 5z – 4(iii) 3a – 2b + 4c – 5(iv) 7a + 3b + 2c + 4(v) 2a2 – b2 – 3ab + 6(vi) a2 + b2 – c2 + ab – 3ac

Answer»

(i) Given x + y – 3z + y    

x + y – 3z + y = x + y – (3z – y)

(ii) Given 3x – 2y – 5z – 4

3x – 2y – 5z – 4 = 3x – 2y – (5z + 4)

(iii) Given 3a – 2b + 4c – 5

3a – 2b + 4c – 5 = 3a – 2b – (–4c + 5)

(iv) Given 7a + 3b + 2c + 4

7a + 3b + 2c + 4 = 7a + 3b – (–2c – 4)

(v) Given 2a– b2 – 3ab + 6

2a– b2 – 3ab + 6 = 2a2 – b2 – (3ab – 6)

(vi) Given a2 + b2 – c2 + ab – 3ac

a2 + b2 – c+ ab – 3ac = a2 + b2 – c2 – (- ab + 3ac)

715.

Fill in the blanks to make the statement true:(x + a) (x + b) = x2 + (a + b) x + ________.

Answer»

(x + a) (x + b) = x2 + (a + b) x + ab

= (x + a) (x + b)

= x × (x + b) + a × (x + b)

= x2 + xb + xa + ab

= x2 + x (b + a) + ab

716.

How much is y4 -12y2 +y+14 greater than 17y3+34y2 -51y+68?

Answer»

Required expression is

y4 -12y2 +y+14-(17y3+34y2 -51y+68)

= y4 -12y2 +y+14-17y3-34y2 +51y-68 On combining the like terms,

= y4-12y2-34y2 + y+51y+14-68-17y3 

= y4-46y2 + 52y-17y3 -54 

= y4 -17y3 -46y2 + 52y-54

So, y4 -12y2 +y+14 is y4-17y3-46y2 + 52y-54 greater than 17y3+34y2 -51y+68.

717.

Fill in the blanks to make the statement true:The product of two polynomials is a ________.

Answer»

Polynomial

As the product of two polynomials is again a polynomial.

718.

13x = (85)2 – (84)2 then x = ……………….A) 16 B) 11 C) 13 D) 10

Answer»

Correct option is  C) 13

Correct option is (C) 13

\(85^2–84^2\) \(=(85-84)\times(85+84)\)

\(=1\times169=169\)

\(\therefore\) 13x = 169

\(\Rightarrow\) \(x=\frac{169}{13}=13\)

719.

How much does 93p2 -55p+4 exceed 13p3 -5p2 + 17p-90?

Answer»

Required expression is

93p2 -55p+4 —(13p3 -5p2 + 17p-90)

= 93p2 -55p+4 -13p3+5p2 – 17p + 90

On combining the like terms,

= 93p2 + 5p2-55p-17p+4+90-13p3 

= 98p2-72p+94-13p3 

=-13p3 + 98p2-72p+ 94

So, 93p2 -55p+4 is -13p3 + 9p2 -72p+ 94 exceed from 13p3 -5p2 + 17p-90.

720.

To what expression must 99x3 - 33x2 -13x - 41 be added to make the sum zero?

Answer»

In order to find the solution, we will subtract 99x3 -33x2 -13x-41 from 0.

Required expression is

0- (99x3 -33x2 -13x-41) 

= 0- 99x3 +33x2 +13x+41

= – 99x3 +33x2 +13x+41

So, If we add -99x3 +33x2 +13x+41 to 99x3 -33x2 -13x-41, then the sum is zero.

721.

(2x+3) (3x-1) =?(a) (6x2+8x-3) (b) (6x2+7x-3) (c) (6x2-7x-3) (d) (6x2-7x+3)

Answer»

(b) (6x2+7x-3)

Explanation:

Given (2x+3) (3x-1)

By solving in horizontal method we get

(2x+3) (3x-1)= 2x (3x-1) + 3 (3x-1)

(2x+3) (3x-1)= (6x2+7x-3)

722.

Add the expression:(8/5)x + (11/7)y + (9/4)xy, (-3/2)x – (5/3)y – (9/5)xy

Answer»

 (8/5)x + (11/7)y + (9/4)xy, (-3/2)x – (5/3)y – (9/5)xy

Required sum,

[(8/5)x + (11/7)y + (9/4)xy] + [(-3/2)x – (5/3)y – (9/5)xy]

Collecting like terms,

= [(8/5)x – (3/2)x] + [(11/7)y – (5/3)y] + [(9/4)xy – (9/5)xy]

= (1/10)x – (2/21)y + (9/20)xy

723.

Add the expression: (3/2)x3 – (1/4)x2 + (5/3), (-5/4)x3 + (3/5)x2 – x + (1/5), -x2 + (3/8)x – (8/15)

Answer»

(3/2)x3 – (1/4)x2 + (5/3), (-5/4)x3 + (3/5)x2 – x + (1/5), -x2 + (3/8)x – (8/15)

Required sum,

= (3/2)x3 – (1/4)x2 + (5/3), (-5/4)x3 + (3/5)x2 – x + (1/5), -x2 + (3/8)x – (8/15)

Collecting like terms,

= [(3/2)x3 – (5/4)x3] + [- (1/4)x2 + (3/5)x2 -x2] + [– x + (3/8)x] + [(5/3) + (1/5) – (8/15)]

= (1/4)x3 – (13/20)x2 – (5/8)x + (4/3)

724.

Add the expression:(2/3)a – (4/5)v + (3/5)c, -(3/4)a – (5/2)b + (2/3)c, (5/2)a + (7/4)b – (5/6)c

Answer»

(2/3)a – (4/5)v + (3/5)c, -(3/4)a – (5/2)b + (2/3)c, (5/2)a + (7/4)b – (5/6)c

Required sum,

= [(2/3)a – (4/5)b + (3/5)c] + [-(3/4)a – (5/2)b + (2/3)c] + [(5/2)a + (7/4)b – (5/6)c]

Collecting like terms,

= (2/3)a -(3/4)a + (5/2)a – (4/5)b – (5/2)b + (7/4)b + (3/5)c + (2/3)c – (5/6)c

= [(2/3) – (3/4) + (5/2)]a + [(-4/5) – (5/2) + (7/4)]b + [(3/5) + (2/3) – (5/6)]c

= [(8 – 9 + 30)/12)a] + [(-16 -15 +30)/20)b] + [(18 + 20 – 25)/ 30)c]

= (29/12)a +- (31/20)b + (13/30)c

725.

(x+4) (x+4) =?(a) (x2+16) (b) (x2+4x+16) (c) (x2+8x+16) (d) (x2+16x)

Answer»

(c) (x2+8x+16)

Explanation:

Given (x+4) (x+4)=(x+4)2

By expanding the given expression by using (a + b)= a2+2ab+bwe get

(x+4)2 = x2+2(x) (4)+42 = x2+8x+16

726.

(x-6) (x-6) =?(a) (x2-36) (b) (x2+36) (c) (x2-6x+36) (d) (x2-12x+36)

Answer»

(d) (x2-12x+36)

Explanation:

Given (x-6) (x-6)=(x-6)2

By expanding the given expression by using (a – b)= a2-2ab+bwe get

(x-6)2 = x2-2(x) (6)+62 = x2-12x+36

727.

Add the expression:(3/5)x, (2/3)x, (-4/5)x

Answer»

(3/5)x, (2/3)x, (-4/5)x

In the above questions terms having the same literal factors are like terms.

= (3/5)x + (2/3)x + (-4/5)x

LCM of 5, 3, and 5 is 15

= (9x + 10x – 12x)/ 15

= (19x – 12x)/ 15

= (7/15)x

728.

Coefficient of y in the term –y/3 is(a) – 1 (b) – 3 (c) -1/3 (d) 1/3

Answer»

(c) -1/3

-y/3 can also be written as y × (-1/3)

So, Coefficient of y is -1/3

729.

Add the expression:5x, 7x, -6x

Answer»

5x, 7x, -6x

In the above questions terms having the same literal factors are like terms.

Now add the like terms,

= 5x + 7x + (-6x) … [∵ + × – = -]

Add terms having same sign first,

= 5x + 7x – 6x

= 12x – 6x

= 6x

730.

Add: 6ax-2by+3cz, 6by-11ax-cz and 10cz-2ax-3by

Answer»

Given 6ax-2by+3cz, 6by-11ax-cz and 10cz-2ax-3by

To add the given expression we have arrange them column wise is given below:

6ax-2by+3cz

-11ax+6by-cz

-2ax-3by+10cz

-7ax+by+12cz
731.

Which of the following are like terms?(a) 5xyz2, – 3xy2z (b) – 5xyz2, 7xyz2(c) 5xyz2, 5x2yz (d) 5xyz2, x2y2z2

Answer»

(b) – 5xyz2, 7xyz2

Like terms are formed from the same variables and the powers of these variables are also the same. But coefficients of like terms need not be the same.

732.

Add: 2x3-9x2+8, 3x2-6x-5, 7x3-10x+1 and 3+2x-5x2-4x3

Answer»

Given 2x3-9x2+8, 3x2-6x-5, 7x3-10x+1 and 3+2x-5x2-4x3

To add the given expression we have arrange them column wise is given below:

2x3-9x2+8

7x3-10x+1

3x2– 6x- 5

-4x3-5x2+2x+3

5x3-11x2-14x+7
733.

Fill in the blanks to make the statement true:The product of two terms with like signs is a ____________ term.

Answer»

Positive

If both the like terms are either positive or negative, then the resultant term will always be positive.

734.

Square of 3x – 4y is(a) 9x2 – 16y2 (b) 6x2 – 8y2(c) 9x2 + 16y2 + 24xy (d) 9x2 + 16y2 – 24xy

Answer»

(d) 9x2 + 16y2 – 24xy

As per the condition in the question, (3x – 4y)2

The standard identity = (a – b)2 = a2 – 2ab + b2

Where, a = 3x, b = 4y

Then,

(3x – 4y)2 = (3x)2 – (2 × 3x × 4y) + (4y)2

= 9x2 – 24xy + 16y2

735.

Fill in the blanks to make the statement true.Sum or difference of two like terms is ________.

Answer»

Sum or difference of two like terms is a like term.

Let us consider the tow like terms = 2y and 3y

Sum of two like terms = 2y + 3y

= 5 y

Difference of two like terms = 2y – 3y

= -y

736.

Fill in the blanks to make the statement true:The product of two terms with unlike signs is a ____________ term.

Answer»

Negative

As the product of a positive term and a negative term is always negative.

737.

Evaluate each of the following expressions for x = -2, y = -1, z = 3:(i) (x/y) + (y/z) + (z/x)(ii) x2 + y2 + z2 – xy – yz – zx

Answer»

(i) Given x = -2, y = -1, z = 3

Consider (x/y) + (y/z) + (z/x)

On substituting the given values we get,

= (-2/-1) + (-1/3) + (3/-2)

The LCM of 3 and 2 is 6

= (12 – 2 – 9)/6

= (1/6)

(ii) Given x = -2, y = -1, z = 3

Consider x2 + y2 + z2 – xy – yz – zx

On substituting the given values we get,

= (-2)2 + (-1)2 + 32 – (-2) (-1) – (-1) (3) – (3) (-2)

= 4 + 1 + 9 – 2 + 3 + 6

= 23 – 2

= 21

738.

Fill in the blanks to make the statement true.In the formula, area of circle = πr2, the numerical constant of the expression πr2 is ________.

Answer»

In the formula, area of circle = πr2, the numerical constant of the expression πr2 is π.

739.

Product of 6a2 – 7b + 5ab and 2ab is(a) 12a3b – 14ab2 + 10ab (b) 12a3b – 14ab2 + 10a2b2(c) 6a2 – 7b + 7ab (d) 12a2b – 7ab2 + 10ab

Answer»

(b) 12a3b – 14ab2 + 10a2b2

Now we have find product of trinomial and monomial,

= (6a2 – 7b + 5ab) × 2ab

= (2ab × 6a2) – (2ab × 7b) + (2ab × 5ab)

= 12a3b – 14ab2 + 10a2b2

740.

Fill in the blanks to make the statement true:a (b + c) = ax ____ × ax _____.

Answer»

b,c

We have , a(b+c)=a x b + a x c [using left distributive law]

741.

Fill in the blanks to make the statement true:Number of terms in the expression a2 + bc × d is ________.

Answer»

two

The expression can be written as

a2 + bc × d = a2 + bcd

The multiplication sign does not mean that there are two separate terms. Two terms can be separated only by the operations of addition or subtraction.

742.

Fill in the blanks to make the statement true:1032 – 1022 = ………….. × (103 – 102) = ……… .

Answer»

(103 + 102), 205

1032 – 1022 is of the form a2 – b2. Comparing the two we get, a = 103 and b = 102.

We have a2 - b2 = (a + b)(a - b).

So, 1032 – 1022 = (103 + 102)(103 - 102)

= (205)(1)

= 205×1 

= 205

743.

Fill in the blanks to make the statement true:Area of a rectangular plot with sides 4x2 and 3y2 is __________.

Answer»

12x2y2

Let the length of rectangular plot = l = 4x2

The breadth of rectangular plot = b = 3y2

Area of rectangular plot = l × b

= 4x2 × 3y2

= 12x2y2

744.

Which of the following is Algebraic Expression?A) 96B) 95 ÷ 11 × 3C) 2 + m + nD) – 30 + (16 ÷ 4)

Answer»

Correct option is  C) 2 + m + n

745.

Write the constant term of each of the following algebraic expressions:(i) x2y − xy2 + 7xy − 3(ii) a3 − 3a2 + 7a + 5

Answer»

(i) Given x2y − xy2 + 7xy − 3

The constant term in the given algebraic expressions is -3.

(ii) Given a3 − 3a2 + 7a + 5

The constant term in the given algebraic expressions is 5.

746.

Which of the following is a binomial?A) 19 × 4B) 7xyzC) x – 4aD) 3x + y – z

Answer»

Correct option is C) x – 4a

Binomial expression is a mathematical expression of two terms connected by a plus sign or minus sign.

It is clear that 19 x 4 and 7xyz are example o monomial, 3x + y - z is example of trinomial and x - 4a is an example of binomial.

747.

Which of the following is not a numerical expression?A) 1 + 2 – 9B) 9 + (6 – 4)C) -3 – 5D) x - 11/3

Answer»

Correct option is D) x - 11/3

Numerical expression contains numbers and at least on e operation. it does not contain any variable . It is clear that 1 + 2 - 9, 9 + (6 - 4) and -3 - 5 are examples of numerical expression.

748.

Fill in the blanks to make the statement true:(a – b) _________ = a2 – 2ab + b2

Answer»

(a – b) (a – b) = (a – b)2= a2 – 2ab + b2

(a – b) (a – b) = a × (a – b) – b × (a – b)

= a2 – ab – ba + b2

= a2 – 2ab + b2

749.

Fill in the blanks to make the statement true:The coefficient in – 37abc is __________.

Answer»

-37

The constant term (with their sign) involved in term of an algebraic expression is called the numerical coefficient of that term.

750.

Write the numerical coefficient of each in the following:(i) xy(ii) -6yz(iii) 7abc(iv) -2x3y2z

Answer»

(i) Given xy

 The numerical coefficient in the term xy is 1.

(ii) Given -6yz

The numerical coefficient in the term – 6yz is – 6.

(iii) Given 7abc

The numerical coefficient in the term 7abc is 7.

(iv) Given -2x3y2z

The numerical coefficient in the term −2x3y2z is -2.