Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

651.

Find the product:(3p2 + q2) (2p2 – 3q2)

Answer»

(3p2 + q2) (2p2 – 3q2)

Suppose (a + b) and (c – d) are two binomials. By using the distributive law of multiplication over addition twice, we may find their product as given below.

(a + b) × (c – d) = a × (c – d) + b × (c – d) = (a × c – a × d) + (b × c – b × d)

= ac – ad + bc – bd

Let,

a= 3p2, b= q2, c= 2p2, d= 3q2

Now,

= 3p2× (2p2 – 3q2) + q2 × (2p2 – 3q2)

= [(3p2× 2p2) + (3p2× -3q2)] + [(q2 × 2p2) + (q2 × -3q2)]

= [6p4 – 9p2q2 + 2q2p2 – 3q4)]

= [6p4 – 7p2q2 – 3q4]

652.

922 – 82 = ……………….. A) 1400 B) 1000 C) 8400 D) 8500

Answer»

Correct option is  C) 8400

Correct option is (C) 8400

\(92^2-8^2=(92-8)(92+8)\)

= 84 \(\times\) 100 = 8400.

653.

I = ………………..A) \(\frac{PTR}{100}\)B) \(\frac{P}{100TR}\)C) \(\frac{100T}{PR}\)D) \(\frac{100I}{PR}\)

Answer»

Correct option is   A) \(\frac{PTR}{100}\)

654.

Using the identify (a + b)2 = a2 + 2ab + b2 simplify the following.(x2 + 5)2

Answer»

Using the identity 

(a + b)2 = a2 + 2ab + b2 

(x2 +5)2 = (x2)2 + 2.x2.5 + 52 

= x4 + 10x2 + 25

655.

Using the identify (a + b)2 = a2 + 2ab + b2 simplify the following.(2p + 3q)2

Answer»

Using the identity 

(a + b)2 = a2 + 2ab + b2 (2p + 3q)

= (2p)2 + 2.2p.3q + (3q)2 

= 4p2 + 12pq + 9q2

656.

Using the identify (a + b)2 = a2 + 2ab + b2 simplify the following.(3x+2y)2

Answer»

Using the identity 

(a + b)2 = a2 +2ab + b2 

(3x + 2y)2 =(3x)2 + 2.3x.2y + (2y)

= 9x2 +12xy + 4y2

657.

Now take x = 2, a = 1 and b = 3, verify the identity (x + a) (x + b) s x + (a + b)x + ab. i) What do you observe? Is LHS = RHS?ii) Take different values for x, a and b for verification of the above identity. iii) Is it always LHS = RHS for all values of a and b?

Answer»

i) (x + a) (x + b) = x2 + (a + b)x + ab

x = 2, a = 1, b = 3 then

⇒ (2 + 1) (2 + 3) = 22 + x(1 + 3)2 + 1 × 3

⇒ 3 × 5 = 4 + 4x2 + 3

⇒ 15 = 4 + 8 + 3 

⇒ 15 = 15

∴ LHS = RHS

ii) x = 0, a = 1, b = 2 then

⇒ (0 + 1) (0 + 2) = 02 + (1 + 2) 0 + 1 × 2

⇒ 1 × 2 = 0 + 0 + 2

⇒ 2 = 2

∴ LHS = RHS for different values of x, a, b.

iii) LHS = RHS for all the values of a, b.

658.

Using the identify (a + b)2 = a2 + 2ab + b2 simplify the following.(a + 6 )2

Answer»

Using the identity 

(a + b)2 = a2 + 2ab + b2(a + 6)2 

= a2 +2.a.6 + 62 = a2 +12a + 36

659.

Find the expression for the product (x+a) (x+b) (x+c) using the identity (x + a)(x + b) = x2 + (a + b)x + ab

Answer»

(x + a) (x + b) (x + c) 

Consider (x + a)(x + b) 

= x2 + (a + b)x + ab 

= x2 + ax + bx + ab (x + a)(x + b)(x + c) 

= (x2 + ax + bx + ab)(x + c) 

= x(x2 + ax + bx+ ab) + c (x2 + ax + bx + ab) 

= x3 + ax2 + bx2 + abx + cx2 + cax +cbx + abc 

= x3 + ax2 + bx2+ cx2 + abx + cax +cbx + abc [by rearranging] 

= x3 + x2(a + b + c) + x(ab + ca +bc) + abc 

∴ (x + a)(x + b)(x + c) = x3 +x2 (a + b + c) + x(ab + bc + ca) + abc

660.

Evaluate using suitable identities103× 96

Answer»

103 × 96 = (100 + 3)(100 - 4)

This is in the form. 

(x + a)(x + b) = x2 + (a + b)x + ab 

Here x = 100, a = 3, b = -4 

(100 + 3)(100-4) = 1002 + (3 – 4)100 + 3 × -4 

= 10000 + (- 1)100 – 12 

= 10000 – 100 – 12 

103 × 96 = 9888

661.

Find the product: i. (a + 3) ( a + 5) ii. (3t + 1) (3t + 4) iii. (a – 8) (a + 2) iv. (a – 6) (a – 2)

Answer»

i. (a + 3) (a + 5) 

This is in the form. 

(x + a)(x + b) = x2 + (a + b)x + ab 

Here x = a, a = 3, b = 5 

(a + 3)(a+ 5) = a2 +(a + 5)a + 3.5 

= a2 + 8a + 15 

(ii) (3t + 1)(3t + 4)

This is in the form. (x + a)(x + b) 

= x2 +(a + b)x + ab 

Here x =3t,a = 1, b = 4 

(3t – 1)(3t + 4) = (3t)2+(1+ 4)3t + 1.4 

= 9t2 +5(3t) + 4 = 9t2 +15t + 4 

(iii) (a -8)(a + 2)

This is in the form (x + a)(x + b) = x2 +(a + b)x + ab 

Here x = a, a = -8, b = 2 

(a – 8)(a + 2) = a2 + (-8 + 2)a + (-8)(2) 

= a2 + (-6)a – 16 = a2 – 6a – 16 

(iv) (a – 6)(a – 2)

This is in the form (x + a)(x + b) 

= x2 +(a + b)x + ab 

Here x = a, a = -6,b = -2 

(a – 6)(a – 2) = a2 + (- 6 – 2) a + (-6)(-2) 

=a2 + (- 8)a + 12 

= a2 – 8a + 12

662.

Evaluate using suitable identities53 × 55

Answer»

53 × 55 = (50 + 3) (50 + 5) 

This is in the form. 

(x + a)(x + b) = x2 + (a + b)x + ab 

Here x = 50, a = 3, b = 5 

(50 + 3)(50 + 5) = 502 + (3 + 5)50 + 3 × 5 

= 2500 + (8)50 +15 

= 2500 + 400 + 15 

∴ 53 × 55 = 2915

663.

Evaluate using suitable identities34 × 36

Answer»

34 × 36 = (30 + 4) (30 + 6) 

This is in the form. 

(x + a)(x + b) = x2+ (a + b)x + ab 

Here x =30, a = 4, b = 6 

(30 + 4)(30 + 6) = 302 + (4 + 6)30 + 4 × 6 

= 900 + 300 + 24 

34 × 36 = 1224

664.

Evaluate using suitable identities102 × 106

Answer»

102 × 106 = (100 + 2) (100 + 6) 

This is in the form. (x + a)(x + b) 

= x2 +(a + b)x + ab 

Here x = 100, a = 2, b = 6 

(100 + 2)(100 + 6) = 1002 +(2 + 6)100 + 2 × 6 

= 10000 + (8)100 + 12 

= 10000 + 800 + 12 

∴102 × 106 = 10812

665.

If a = 1, b = 2 then (a – b)2 = ……………….. A) – 1 B) 1 C) – 2 D) 3

Answer»

Correct option is  B) 1

Correct option is (B) 1

a = 1, b = 2

Then \((a-b)^2\) \(=(1-2)^2=(-1)^2=1.\)

666.

The value of 3x + 5 at x = 1 is ………………….. A) 6 B) 8 C) 9 D) 10

Answer»

Correct option is  B) 8

Correct option is (B) 8

The value of 3x + 5 at x = 1

\(=3\times1+5=3+5=8.\)

667.

106 × 94 = …………….. A) 9864 B) 9964 C) 9800 D) 9364

Answer»

Correct option is  B) 9964

Correct option is (B) 9964

\(106\times94=(100+6)(100-6)\)

\(=100^2-6^2\) = 10000 - 36 = 9964.

668.

– 3x2 + 3x2 – 5x2 – x2 = ……………. A) x2 B) – 6x2 C) 3x2 D) 6x2

Answer»

Correct option is  B) – 6x2 

Correct option is (B) –6x2

\(–3x^2+3x^2-5x^2-x^2\) \(=-5x^2-x^2\) \(=-6x^2.\)

669.

(a + b)2 – (a – b)2 = ………………. A) 2ab B) 2bcC) 4a2D) None

Answer»

Correct option is  D) None

670.

Identify like terms. A) 3x2 , 2x2 , – x2 B) xy, xy2 , – 3y2 C) pq, pq2 , \(\frac{1}{2}\)pq D) 8x2 , 9y2 , 2pq

Answer»

A) 3x2 , 2x2 , – x2 

671.

Find the products:(x2 – xy + y2) × (x + y)

Answer»

Given (x2 – xy + y2) × (x + y)

To find the product of given expression we have to use horizontal method.

In that we have to multiply each term of one expression with each term of another

Expression so by multiplying we get,

(x2 – xy + y2) × (x + y)

⇒ x (x2 – xy + y2) + y (x2 + xy + y2)

⇒ x3 – x2y – y2x + x2y + y2x + y3

⇒ (x3+ y3)

672.

Find the products:(x2 + xy + y2) × (x – y)

Answer»

Given (x2 + xy + y2) × (x – y)

To find the product of given expression we have to use horizontal method.

In that we have to multiply each term of one expression with each term of another

Expression so by multiplying we get,

(x2 + xy + y2) × (x – y)

⇒ x (x2 + xy + y2) + y (x2 + xy + y2)

⇒ x3 + x2y + y2x – x2y – y2x + y3

⇒ (x3– y3)

673.

Divide: 24x2y3 by 3xy

Answer»

 Given 24x2y3 by 3xy

⇒24x2y/ (3xy)

On dividing monomial by a monomial we have divide same variables of each

Expressions.

On simplifying we get,

⇒8x2y

674.

Add: 7x, -3x, 5x, -x, -3x

Answer»

Given 7x,-3x, 5x, -x, -3x

To add the given expression we have arrange them column wise is given below:

7x

-3x

5x

-x

-3x

6x
675.

Add: 8ab, -5ab, 3ab, -ab

Answer»

Given 8ab, -5ab, 3ab, -ab

To add the given expression we have arrange them column wise is given below:

8 ab

-5 ab

3 ab

-ab

5ab
676.

Find each of the following products:\((0.5x)\times (\frac{1}{3}xy^{2}z^{4})\times (24x^{2}yz)\)

Answer»

0.5 × \(\frac{1}{3}\)× 24 × x × x × y2 × y × x2 × z4 × z

= \(\frac{12}{3}\)× x4 × y3 × z5

= 4x4 × y3 × z5

= 4x4y3z5

677.

Subtract: -2abc from -8abc

Answer»

Given -2abc from -8abc

According to the rules of subtraction of algebraic equations, we have negative sign will becomes positive and so we have to keep the big numerical sign.

Now arrange the variables in rows and columns we get

-8abc

-2abc

+

+10 abc
678.

Simplify:(ab - c)2 + 2abc

Answer»

The given expression is

(ab - c)2 + 2abc

= (ab)2-2(ab)(c) + (c)2 + 2abc

= a2b2-2abc + c2 + 2abc

= a2b2 + c2

Therefore, (ab - c)2 + 2abc = a2b2 + c2

679.

Subtract: -16p from -11p

Answer»

Given -16p from -11p

According to the rules of subtraction of algebraic equations, we have negative sign will becomes positive and so we have to keep the big numerical sign.

Now arrange the variables in rows and columns we get

-16p

-11p

+

+ 5p
680.

Express the number appearing in the following statements in standard form.(a) The distance between Earth and Moon is 384,000,000 m.(b) Speed of light in vacuum is 300,000,000 m/s(c) Diameter of the Earth is 1,27,56,000 m.(d) Diameter of the Sun is(e) Number of average stars in a galaxy = 100,000,000m.f) The universe is estimated to be about 12,000,000,000 years old.(g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be 300,000,000,000, 000, 000 m.(h) 60,230,000,000,000,000,000,000 molecules are contained in a drop of water weighing 1.8 gm.(i ) The earth has 1,353,000,000 cubic km of sea water.(j) The population of India was about 1,027,000000 in March, 2001.

Answer»

(a) The distance between Earth and Moon is 384,000,000 m.

= 3.84 × 108 m

(b) Speed of light in vacuum is 300,000,000 m/s

= 3 × 108 m/s

(c) Diameter of the Earth is 1,27,56,000 m.

1.2756 × 107 m

(d) Diameter of the Sun is
1,400,0, 000m.

1.4 × 109m

(e) Number of average stars in a galaxy = 100,000,000m.

= 1 × 1011 m

(f) The universe is estimated to be about 12,000,000,000 years old.

= 1.2 × 1010 years old

(g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be 300,000,000,000, 000, 000 m.

= 3 × 1020 m

(h) 60,230,000,000,000,000,000,000 molecules are contained in a drop of water weighing 1.8 gm.

= 6.023 × 1022 molecules

(i ) The earth has 1,353,000,000 cubic km of sea water.

= 1.353 × 109 cubic km

(j) The population of India was about 1,027,000000 in March, 2001.

= 1.027 × 109

681.

Find each of the following products:\((\frac{4}{3}pq^{2})\times (-\frac{1}{4}p^{2}r)\times (16p^2q^2r^2)\)

Answer»

\(\frac{4}{3}\)× \(\frac{1}{4}\) × 16 × p × p2 × p2 × q2 × q2 × r × r2

= \(\frac{-16}{3}\)× p5 × q4 × r3

= \(\frac{-16}{3}\)p5q4r3

682.

Express the following numbers in standard form :(i) 5,00,00,000(ii) 70,00,000(iii) 3,18,65,00,000(iv) 3,90,878(v) 39087.8(vi) 3908.78

Answer»

(i) 5,00,00,000

5 × 107

(ii) 70,00,000

7 × 106

(iii) 3,18,65,00,000

3.1865 × 109

(iv) 3,90,878

3.90878 × 105

(v) 39087.8

3.90878 × 103

(vi) 3908.78

3.90878 × 103

683.

Find the number from each of the following expanded forms :(a) 8 × 104 + 6 × 103 + 0 × 102 + 4 × 101 + 5 × 100(b) 4 × 105 + 5 × 103 + 3 × 102 + 2 × 100(c) 3 × 104 + 7 × 102 + 5 × 100(d) 9 × 105 + 2 × 102 + 3 × 101

Answer»

(a) 8 × 104 + 6 × 103 + 0 × 102 + 4 × 101 + 5 × 100

= 8 × 10000 + 6 × 1000 + 0 × 100 + 4 × 10 + 5 × 1

= 80,000 + 6000 + 0 + 40 + 5

= 86,045

(b) 4 × 105 + 5 × 103 + 3 × 102 + 2 × 100

= 400000 + 5000 + 300 + 2

= 4,05,302

(c) 3 × 104 + 7 × 102 + 5 × 100

= 40000 + 500 + 5

= 130,7051

(d) 9 × 105 + 2 × 102 + 3 × 101

= 900000 + 200 + 30

= 9,00,230

684.

Subtract :(x2 – y2) from (2x2 – 3y2 + 6xy)

Answer»

(x2 – y2) from (2x2 – 3y2 + 6xy)

The difference of two like terms is a like term whose coefficient is the difference of the numerical coefficient of the two like terms.

We have,

= (2x2 – 3y2 + 6xy) – (x2 – y2)

Change the sign of each term of the expression to be subtracted and then add.

= 2x2 – 3y2 + 6xy – x2 + y2

= (2x2 – x2) + (– 3y2 + y2) + 6xy

= (2 – 1)x2 + (– 3 + 1)y2 + 6xy

= 1x2 + (– 2y2) + 6xy

= 1x2 – 2y2 + 6xy

685.

Subtract :x2 from -3x2

Answer»

x2 from -3x2

The difference of two like terms is a like term whose coefficient is the difference of the numerical coefficient of the two like terms.

Then,

= (-3 – 1)x2

= -4x2

686.

Subtract :(a2 + b2 – 2ab) from (a2 + b2 + 2ab)

Answer»

(a2 + b2 – 2ab) from (a2 + b2 + 2ab)

The difference of two like terms is a like term whose coefficient is the difference of the numerical coefficient of the two like terms.

We have,

= (a2 + b2 + 2ab) – (a2 + b2 – 2ab)

Change the sign of each term of the expression to be subtracted and then add.

= a2 + b2 + 2ab – a2 – b2 + 2ab

= (1 -1)a2 + (1 – 1)b2 + (2 + 2)ab

= (0)a2 + (0)b2 + (4)ab

= 4ab

687.

Write the following numbers in the expanded forms :(i) 279404(ii) 3006194(iii) 2806196(iv) 120719(v) 20068

Answer»

(i) 279404

= 2 × 100000 + 7 × 10000 + 9 × 1000 + 4 × 100 + 0 × 10 + 4 × 1

= 2× 105 + 7× 104 + 9 × 103 + 4 × 102 + 0 × 101 + 4 × 100

(ii) 3006194

= 3 × 1000000 + 0 × 100000 + 0 × 10000 + 6 × 1000 + 1 × 100 + 9 × 10 + 4 × 1

= 3 × 106 + 0 × 105 + 0 × 104 + 6 × 103 + 1 × 102 + 9 × 101 + 4 × 100

(iii) 2806196

= 2 × 1000000 + 8 × 100000 + 0 × 10000 + 6 × 1000 + 1 × 100 + 9 × 101 + 6 × 100

= 2 × 106 + 8 × 105 + 0 × 104 + 6 × 103 + 1 × 102 + 9 × 101 + 6 × 100

(iv) 120719

= 1 × 100000 + 2 × 10000 + 0 × 1000 + 7 × 100 + 1 × 10 + 9 × 1

= 1 × 105 + 2 × 104 + 0 × 103 + 7 × 102 + 1 × 101 + 9 × 100

(v) 20068

= 2 × 10000 + 0 × 1000 + 0 × 100 + 6 × 10 + 8 × 1

= 2 × 104 + 0 × 103 + 0 × 102 + 6 × 101 + 8 × 100

688.

From 7 + x − x2, take away 9 + x + 3x2 + 7x3.

Answer»

Given 7 + x − x2, take away 9 + x + 3x2 + 7x3

= (7 + x – x2) – (9 + x + 3x2 + 7x3)

= 7 + x – x2 – 9 – x – 3x2 – 7x3

= – 7x3– x2 – 3x2 + 7 – 9

= – 7x3 – 4x2 – 2

689.

Subtract :(x – y) from (4y – 5x)

Answer»

(x – y) from (4y – 5x)

The difference of two like terms is a like term whose coefficient is the difference of the numerical coefficient of the two like terms.

We have,

= (4y – 5x) – (x – y)

Change the sign of each term of the expression to be subtracted and then add.

= 4y – 5x – x + y

= (-5x – x) + (4y – y)

= -5x + 3y)

= 3y – 5x

690.

(a) a (a2 + a + 1) + 5 and find its values for (i) a = 0, (ii) a = 1, (iii) a = − 1.

Answer»

(a) a (a2 + a + 1) + 5 = a3 + a2 + a + 5

(i) For a = 0, a3 + a2 + a + 5 = 0 + 0 + 0 + 5 = 5

(ii) For a = 1, a3 + a2 + a + 5 = (1)3 + (1)2 + 1 + 5 = 1 + 1 + 1 + 5 = 8

(iii) For a = −1, a3 + a2 + a + 5 = (−1)3 + (−1)2 + (−1) + 5 = − 1 + 1 − 1 + 5 = 4

691.

Find the products:(x4+(1/x4) × ( x + (1/x))

Answer»

Give. (x4+(1/x4) × ( x + (1/x))

To find the product of given expression we have to use horizontal method.

In that we have to multiply each term of one expression with each term of another

Expression so by multiplying we get,

(x4+(1/x4) × ( x + (1/x))

⇒ x4( x + (1/x)) + (1/x4) ( x + (1/x))

⇒ x5+x3+(1/x3)+(1/x5)

692.

Find the products:(x2 -3x + 7) × (2x + 3)

Answer»

Given (x2 -3x + 7) × (2x + 3)

To find the product of given expression we have to use horizontal method.

In that we have to multiply each term of one expression with each term of another

Expression so by multiplying we get,

(x2 -3x + 7) × (2x + 3)

⇒ 2x (x2 -3x + 7) + 3 (x2 -3x + 7)

⇒ 2x3 – 6x2 + 14x + 3x2 + 9x +21

⇒ 2x3 – 3x2 +5x +21

693.

Find the products:(3x2 + 5x – 9) × (3x – 5)

Answer»

Given (3x2 + 5x – 9) × (3x – 5)

To find the product of given expression we have to use horizontal method.

In that we have to multiply each term of one expression with each term of another

Expression so by multiplying we get,

(3x2 + 5x – 9) × (3x – 5)

⇒ 3x (3x2 + 5x – 9) – 5 (3x2 + 5x – 9)

⇒ 9x3 + 15x2 – 27x – 15x2 – 25x + 45

⇒ 9x3 – 52x + 45

694.

Fill in the blanks to make the statement true.Number of terms in a monomial is ________.

Answer»

Number of terms in a monomial is 1.

Expression with one term is called a ‘Monomial’.

695.

Find the number of maximum terms in the product of a monomial and a binomial? 

Answer»

The no. of terms in the product of a monomial and a binomial are two (2).

696.

If \(x+\frac{1}{x} = 9\) find the value of \(x^4+\frac{1}{x^4}\)

Answer»

Given that, x + \(\frac{1}{x}\) = 9

Squaring both sides, we get

(x + \(\frac{1}{x}\))2 = 92

x2\(\frac{1}{x\times x}\) + 2 = 81

x2\(\frac{1}{x\times x}\) = 79

Again,

Squaring both sides, we get

(x2\(\frac{1}{x\times x}\) )2 = 792

x4\(\frac{1}{x\times x\times x\times x}\) + 2 = 6241

x4\(\frac{1}{x\times x\times x\times x}\) = 6239

697.

Evaluate these using identity :33 × 27

Answer»

33 × 27 = (30 + 3) (30 – 3) 

identity (a + b)(a – b) = a2 – b2 

Here a = 30,b = 3 

(30 + 3)(30 – 3) = 302 – 32 = 900 – 9 

33 × 27 = 891

698.

Find the product: (2m – l)(2l – m)

Answer»

(2m – l) (2l – m) 

= 2m(2l – m) – l(2l – m)

= 2m × 2l – 2m × m – l × 2l + l × m

= 4lm – 2m2 – 2l2 + lm

= 5lm – 2m2 – 2l2

699.

Find the product.(2x – y)(2x + y) (4x2 + y2)

Answer»

(2x – y)(2x + y) (4x2 + y2

Identity (a + b)(a – b) = a2 – b2 

[(2x)2 – y2](4x2 + y2

= (4x2 – y2)(4x2 + y2

= 16x4 – y4

700.

Find the errors and correct them in the following :The value of following when a = – 3 : a2 – a – 6 = (- 3)2 – (- 3) – 6 = 9 – 3 – 6 = 0

Answer»

a2 – a – 6 

= (- 3)2 – (- 3) – 6 (when a = – 3) 

= (- 3 × – 3) + 3 – 6 

(Error is – (- 3) = – 3) 

= 9 + 3 – 6 

= 12 – 6 = 6