Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

601.

If A = 4x2 + y2 – 6xy; B = 3y2 + 12x2 + 8xy; C = 6x2 + 8y2 + 6xy then, find (i) A + B + C (ii) (A – B) – C

Answer»

Given A = 4x2 + y2 – 6xy; 

B = 3y2 + 12x2 + 8xy; 

C = 6x2 + 8y2 + 6x

Write the given expressions in standard form. 

A = 4x2 – 6xy + y2 

B = 12x2 + 8xy + 3y2 

C = 6x2 + 6xy + 8y2 

(i) A + B + C = (4x2 – 6xy + y2) + (12x2 + 8xy + 3y2) + (6x2 + 6xy + 8y2

= 4x2 – 6xy + y2 + 12x2 + 8xy + 3y2 + 6x2 + 6xy + 8y2 

= (4x2 + 12x2 + 6x2 ) + (- 6xy + 8xy + 6xy) + (y2 + 3y2 + 8y2

= (4 + 12 + 6) x2 + (- 6 + 8 + 6) xy + (1 + 3 + 8)y2 

∴ A + B + C = 22x2 + 8xy + 12y2

(ii) (A – B) – C 

A + (- B) + (- C) 

Additive inverse of B is 

– B = – (12x2 + 8xy + 3y2

∴ – B = – 12x2 – 8xy – 3y2 

Additive inverse of C is 

– C = -(6x2 + 6xy + 8y2

∴ – C = – 6x2 – 6xy – 8y2 

A + (- B) + (- C) 

= (4x2 – 6xy + y2 ) + (- 12x2 – 8xy – 3y2 ) + (- 6x2 – 6xy – 8y2

= 4x2 – 6xy + y2 – 12x2 – 8xy – 3y2 – 6x2 – 6xy – 8y2 

= (42x – 12x2 – 6x2 ) + (- 6xy – 8xy – 6xy) + (y2 – 3y2 – 8y2 )

∴ (A – B) – C = – 14x2 – 20xy – 10y2

602.

What should be taken away from 3x2 – 4y2 + 5xy +20 to get – x2 – y2 + 6xy + 20.

Answer»

Let the subtracted algebraic expression may be B’ say

3x2 – 4y2 + 5xy – B = – x2 – y2 + 6xy + 20

B = (3x2 – 4y2 + 5xy) – (- x2 – y2 + 6xy + 20)

= 3x2 – 4y2 + 5xy + x2 +y2 – 6xy – 20

= (3x2 + x2) ( – 4y2 + y2) + (5xy – 6xy) – 20

∴ B = 4x2 – 3y2 – xy – 20

∴ The required subtracted expression is B 

= 4x2 – 3y2 – xy – 20

603.

Find the like terms in the following: ax2y, 2x, 5y2, -9x2, -6x, 7xy, 18y2.

Answer»

Like terms are (2x, – 6x) (5y2, 18y2).

604.

Add: 4x2-7xy+4y2-3, 5+6y2-8xy+x2 and 6-2xy+2x2-5y2

Answer»

Given 4x2-7xy+4y2-3, 5+6y2-8xy+x2 and 6-2xy+2x2-5y2

To add the given expression we have arrange them column wise is given below:

4x2-7xy+4y2-3

x2-8xy+6y2+5

2x2-2xy-5y2+6

7x2+5y2-17xy+8
605.

Subtract the first term from second term : (i) 2xy, 7xy(ii) 4a2 , 10a2(iii) 15p, 3p(iv) 6m2 n, – 20m2 n(v) a2 b2 , – a2 b2

Answer»

(i) 7xy – 2xy = (7 – 2) xy = 5xy

(ii) 10a2 – 4a2 = (10 – 4)a2 = 6a2

(iii) 3p – 15p = (3 – 15)p = – 12p

(iv) – 20 m2 n – 6m2 n = (- 20 – 6) m2 n = – 26m2 n

(v) – a2 b2 – a2 b2 = (- 1 – 1)a2 b2 = – 2a2 b2

606.

Find each of the following products:\((-\frac{1}{27}a^2b^2)\times (\frac{9}{2}a^3b^2c^2)\)

Answer»

\(\frac{-1}{27}\times \frac{9}{2}\times a^2\times a^3\times b^2\times b^2\times c^2\)

\(\frac{-1}{6}\times a^5\times b^4\times c^2\)

\(\frac{-1}{6}a^5b^4c^2\)

607.

Subtract the first term from the second term. i) 2xy, 7xyii) 5a2, 10a2iii) 12y, 3yiv) 6x2y, 4x2yv) 6xy, -12xy

Answer»

i) 2xy, 7xy

7xy – 2xy = (7 – 2) xy = 5xy

ii) 5a2, 10a2

10a -5a = (10-5) a= 5a2

iii)  12y, 3y

3y – 12y = (3 – 12)y = -9y

iv) 6x2y, 4x2y

4x2y – 6x2y = (4 – 6) x2y = -2x2y

v) 6xy,-12xy

(-12xy) – 6xy = (-12 – 6) xy = -18xy

608.

Fill in the blanks to make the statement true.–5a2b and –5b2a are ________ terms.

Answer»

–5a2b and –5b2a are unlike terms.

The terms having different algebraic factors are called unlike terms.

609.

Simplify the algebraic expressions by removing grouping symbols.5a – (3b – 2a + 4c)

Answer»

Given 3x – (y – 2x)

Since the ‘–’ sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them. Therefore, we have

= 3x – y + 2x

On simplifying, we get

= 5x – y

610.

Find each of the following products:(-4x2) x (-6xy2) x (-3yz2)

Answer»

(-4) × (-6) – (-3) × x2 × x × y2 × y × z2

= - 72 × x3 × y3 × z2

= -72x3y3z2

611.

P = xy, Q = yz, R = zx then PQR = ………………… A) x2 y2 z2 B) xy2 z2 C) xy zD) \(\frac{x^2y^2}{z^2}\)

Answer»

Correct option is  A) x2 y2 z2 

Correct option is (A) x2 y2 z2

P = xy, Q = yz, R = zx.

Then PQR = (xy) (yz) (zx)

\(=(x\times x)(y\times y)(z\times z)\)

\(x^2y^2z^2\).

612.

If A = xy, B = yz and C = zx, then find ABC=

Answer»

ABC = xy × yz × zx = x2y2z2

613.

If \(\frac{x^2 + y^2 + z^2 - 64}{xy - yz-zx}\)= –2 and x + y = 3z, then the value of z is(a) 2 (b) 3 (c) 4 (d) –2

Answer»

(c) 4 

  \(\frac{x^2 + y^2 + z^2 - 64}{xy - yz-zx}\)= –2 

⇒ x2 + y2 + z2 = - 2xy + 2yz + 2zx + 64

Now,

(x + y + z)2 =  x2 + y2 + z2 + 2xy + 2yz + 2zx

⇒ (3z + z)2 = - 2xy + 2yz + 2zx + 64 + 2xy + 2yz + 2zx

⇒ 16z2 = 4yz + 4xz +64

⇒ 16z2 = 4z(x + y) + 64 ⇒ 16z2 = 4z (3z) + 64

⇒ 16z2 - 12z2 = 64

⇒ 4z2 = 64 ⇒ z2 = 16 ⇒ z = 4.

614.

If x + y + z = 1, xy + yz + zx = –1 and xyz = –1, find the value of x3 + y3 + z3 .

Answer»

(x + y + z)(x2 + y2 + z- xy - yz - zx) = x3 + y3 +z3 - 3xyz

Given, x + y + z = 1, xy +yz + zx = -1 and xyz = -1

To find, x2 + y2 + z2, we use the identity :

(x + y + z)2 = x2 + y2 + z2  + 2( xy + yz + zx)

⇒ 1 =  x2 + y2 + z+ (2 x -1)

⇒  x2 + y2 + z2 = 1 + 2 = 3

∴ Substituting all the values in eqn (i), we get

1 x (3 - (-1)) =  x3 + y3 + z- (3 x -1)

⇒ 1 = (3 + 1) = x3 + y3 + z+3

⇒ 4 = x3 + y3 + z3 + 3 ⇒ x3 + y3 + z= 1.

615.

Find each of the following products:\((-7xy)\times (\frac{1}{4}x^2yz)\)

Answer»

-7 ×\(\frac{1}{4}\) × x × y × x2 × y × z

= \(\frac{-7}{4}\)× x3 × y2 × z

= \(\frac{-7}{4}\)x3y2z

616.

Find each of the following products:(-5a) x (-10a2) x (-2a3)

Answer»

(-5) × (-10) × (-2) × a × a2 × a3

= -100 × a6

= -100a6

617.

Write standard form and additive inverse of the following expressions. (i) – 6a(ii) 2 + 7c2(iii) 6x2 + 4x – 5(iv) 3c + 7a – 9b

Answer»

(i) Additive inverse of – 6a = – (- 6a) = 6a

(ii) Standard form of 2 + 7c2 = 7c2 + 2 

Additive inverse of 7c2 + 2 

= – (7c2 + 2) 

= – 7c2 – 2

(iii) Given expression is in standard form. Additive inverse of 6x2 + 4x – 5 

= – (6x2 + 4x – 5) 

= – 6x2 – 4x + 5

(iv) Standard form of 3c + 7a – 9b = 7a – 9b + 3c 

Additive inverse of 7a – 9b + 3c 

= – (7a – 9b + 3c) 

= – 7a + 9b – 3c

618.

Subtract 3a + 4b – 2c from 6a – 2b + 3c in row method.

Answer»

Let A = 6a – 2b + 3c, B = 3a + 4b – 2c 

Subtracting 3a + 4b – 2c from 6a – 2b + 3c is equal to adding additive inverse of 3a + 4b – 2c to 6a – 2b + 3c 

i.e., A – B = A + (-B) 

additive inverse of (3a + 4b – 2c) = – (3a + 4b – 2c) 

= – 3a – 4b + 2c A – B = A + (-B) 

= 6a – 2b + 3c + (- 3a – 4b + 2c) 

= 6a – 2b + 3c – 3a – 4b +2c 

= (6 – 3)a – (2 + 4)b + (3 + 2)c 

Thus, the required answer = 3a – 6b + 5c

619.

Simplify: 6a2 + 3ab + 5b2 – 2ab – b2 + 2a2 + 4ab + 2b2 – a2

Answer»

6a2 + 3ab + 5b2 – 2ab – b2 + 2a2 + 4ab + 2b2 – a2

= (6a2 + 2a2 – a2 ) + (3ab – 2ab + 4ab) + (5b2 – b2 + 2b2

= [(6 + 2 – 1) a2 ] + [(3 – 2 + 4)ab] + [(5 – 1 + 2)b2

= 7a2 + 5ab + 6b2

620.

Find each of the following products:(7ab) x (-5ab2c) x (6abc2)

Answer»

7 × -5 × 6 × a × a × a × b × b2 × b × c × c2

= 210 × a3 × b4 × c3

= 210a3b4c3

621.

Write below statements are True or False:(i) 3x/9y is a binomial.(ii) The coefficient of b in – 6abc is – 6a.(iii) 5pq and – 9qp are like terms.(iv) The sum of a + b and 2a + 7 is 3a + 7b.(v) When x = – 2, then the value of x + 2 is 0.

Answer»

(i) False

(ii) False

(iii) True

(iv) False

(v) True.

622.

Arjun and his friend George went to a stationary shop. Arjun bought 3 pens and 2 pencils whereas George bought one pen and 4 pencils. If the price of each pen and pencil is ₹ x and ₹ y respectively, then find the total bill amount in x and y.

Answer»

Given cost of each pen is ₹ x and cost of each pencil is ₹ y. 

Arjun bought 3 pens and 2 pencils. 

Cost of 3 pens = 3 × ₹ x = ₹ 3x 

Cost of 2 pencils = 2 × ₹y = ₹ 2y 

Amount paid by Arjun = 3x + 2y = ₹ (3x + 2v) 

George bought one pen and 4 pencils. 

Cost of 1 pen = 1 × ₹ x = ₹ x 

Cost of 4 pencils = 4 × ₹ y = ₹ 4y 

Amount paid by George = x + 4y = ₹(x + 4y) 

Total bill amount = Arjun amount + George amount 

= (3x + 2y) + (x + 4y) =

 3x + 2y + x + 4y 

= 3x + x + 2y + 4y 

= (3 + 1)x + (2 +4)y 

∴ Total bill amount = ₹ (4x + 6y)

623.

Identify like terms among the following: 3a, 6b, 5c, – 8a, 7c, 9c, – a, 2/3 b, 7c/9, a/2

Answer»

Given terms are 3a, 6b, 5c, – 8a, 7c, 9c, – a, 2/3 b, 7c/9, a/2

Like terms: 3a, – 8a, – a, a/2

6b, 2/3 b

5c, 7c, 9c, 7c/9

624.

(√a + √b)(√a – √b) = …………………. A) a – b2 B) a – bC) a2 – b D) a + b

Answer»

Correct option is  B) a – b

625.

\((\frac{a}{3}+\frac{b}{5} )\) \((\frac{a}{3}-\frac{b}{5} )\)= ............................A) \(\frac{a^2}{9}+\frac{b}{2} \)B) \(\frac{a^2}{9}\) – 1 C) \(\frac{a^2}{9}-\frac{b^2}{25} \)D) \(\frac{2a}{3}-\frac{b}{3} \)

Answer»

Correct option is  C) \(\frac{a^2}{9}-\frac{b^2}{25} \)

Correct option is (C) \(\frac{a^2}9-\frac{b^2}{25}\)

\((\frac a3+\frac b5)(\frac a3-\frac b5)=(\frac a3)^2-(\frac b5)^2\) \(=\frac{a^2}9-\frac{b^2}{25}\)

626.

Number of terms in ax2 + bx + c is ………………. A) 2 B) 3 C) 4 D) 1

Answer»

 Correct option is  B) 3

627.

(a – b) (a2 + ab + b2) = …………… A) a3 – b B) a – b3 C) a2 – b2D) None

Answer»

Correct option is   D) None

Correct option is (D) None

\((a–b)(a^2+ab+b^2)\) \(=a^3+a^2b+ab^2-a^2b-ab^2-b^3\)

\(=a^3-b^3\)

628.

(x + 3) (x + 2) = .................A) x2 + 5x + 6 B) x2 – 5x – 6 C) x2 – 3x + 6D) None

Answer»

A) x2 + 5x + 6

629.

Find the continued product:(i) (x +1)(x – 1)(x2 + 1) (ii) (x- 3)(x + 3)(x2 + 9) (iii) (3x – 2y)(3x + 2y)(9x2 + 4y2) (iv) (2p + 3)(2p – 3)(4p2 + 9)

Answer»

(i) (x +1)(x – 1)(x2 + 1) 

We know that, from formula, 

(a + b)(a – b) = a2 – b

(x + 1)(x – 1) (x2 + 1) = (x2 – 1)(x2 + 1) 

= (x2)2 – 1 = x4 – 1

(ii) (x- 3)(x + 3)(x2 + 9) 

We know that, from formula, 

(a + b)(a – b) = a2 – b2 

(x – 3)(x + 3)(x2 + 9) 

= (x2 – 9)(x2 + 9) 

= (x2)2 – 92 = x4 – 81

(iii) (3x – 2y)(3x + 2y)(9x2 + 4y2

We know that, from formula, 

(a + b)(a – b) = a2 – b2 

(3x – 2y)(3x + 2y)(9x2 + 4y2

= (9x2 – 4y2)(9x2 + 4y2

= 81x4 – 16y4

(iv) (2p + 3)(2p – 3)(4p2 + 9) 

We know that, from formula, 

(a + b)(a – b) = a2 – b2 

(2p + 3)(2p – 3)(4p2 + 9) 

= (4p2 – 9)(4p2+ 9) 

= (4p2)2 – 92 = 16p4 – 81

630.

Using a2 – b2 = (a + b) (a – b), find(i) 1012 – 992(ii) (10.3)2 – (9.7)2(iii) 1532 – 1472

Answer»

(i) 1012 – 992

= (101 + 99) (101 – 99) (Using given identity)

= (200) (2)

= 400

(ii) (10.3)2 – (9.7)2

= (10.3 + 9.7) (10.3 – 9.7) (Using given identity)

= (20) (0.6)

= 12

(iii) 1532 – 1472

= (153 + 147) (153 – 147) (Using given identity)

= (300) (6)

= 1800

631.

9.8 × 10.2 = ……………….A) 39.55 B) 91.99 C) 99.96 D) 96.99

Answer»

Correct option is  C) 99.96

Correct option is (C) 99.96

9.8 \(\times\) 10.2 = (10 - 0.2) \(\times\) (10+0.2)

\(=10^2-(0.2)^2\)

= 100 - 0.04 = 99.96

632.

(99)2 = …………….. A) 1145 B) 8900 C) 9800 D) 9801

Answer»
Question:
(99)² = ?

Answer:
D) 9801

Solution:
(99)² can also be written as (100 – 1)²
Now apply (a – b)² = a² + b² – 2ab

(99)²
= (100)² + (1)² - 2(100)(1)
= 10000 + 1 - 200
9801

Hope my answer helps you :)

Correct option is  D) 9801

633.

9x2 – y2 = ……………… A) (3x + y) (3x – y) B) (3x – 1) (3x – y) C) (3x – y)(3x – 3)D) None

Answer»
Question:
9x² – y²

Answer:
A) (3x + y) (3x – y)

Solution:
We know the algebraic identity:
a² – b² = (a + b) (a – b)

Apply the same identity.
  • 9x² = (3x)²
  • y² = (y)²
So, the answer would be
(3x + y) (3x – y)


Hope it helps you :)
Please select my answer as best.

A) (3x + y) (3x – y)

634.

Subtract: x3 + 2x2y + 6xy2 − y3 from y3−3xy2−4x2y

Answer»

Given x3 + 2x2y + 6xy2 − y3 and y3−3xy2−4x2y

= (y3 – 3xy2 – 4x2y) – (x3 + 2x2y + 6xy2 – y3)

= y3 – 3xy2 – 4x2y – x3 – 2x2y – 6xy2 + y3

= y3 + y3– 3xy2– 6xy2– 4x2y – 2x2y – x3

= 2y3– 9xy2 – 6x2y – x3

635.

Find the product:-17x2(3x – 4)

Answer»

-17x2(3x – 4)

Let p, q and r be three monomials.

Then, by distributive law of multiplication over subtraction, we have:

P × (q – r) = (p × q) – (p × r)

Now,

= (-17x2 × 3x) – (-17x2 × 4)

= (-51x3 + 68x2) … [∵ am × an = am+n]

636.

Find the product:(7/2)x2((4/7)x + 2)

Answer»

(7/2)x2((4/7)x + 2)

Let p, q and r be three monomials.

Then, by distributive law of multiplication over addition, we have:

P × (q + r) = (p × q) + (p × r)

Now,

= ((7/2)x2 × (4/7)x) + ((7/2)x2 × 2)

= ((7×4)/ (2×7))x3 + ((7×2)/(2×1))x2 … [∵ am × an = am+n]

= ((1×2)/ (1×1))x3 + ((7×1)/(1×1))x2

= (2)x3 + (7)x2

637.

Find the product:-4x2y(3x2 – 5y)

Answer»

-4x2y(3x2 – 5y)

Let p, q and r be three monomials.

Then, by distributive law of multiplication over subtraction, we have:

P × (q – r) = (p × q) – (p × r)

Now,

= (-4x2y × 3x2) – (-4x2y × -5y)

= (-12x4y + 20x2y2) … [∵ am × an = am+n]

638.

Find the product:(x3 – y3) (x2 + y2)

Answer»

(x3 – y3) (x2 + y2)

Suppose (a – b) and (c + d) are two binomials. By using the distributive law of multiplication over addition twice, we may find their product as given below.

(a – b) × (c + d) = a × (c + d) – b × (c + d) = (a × c + a × d) – (b × c + b × d)

= ac + ad – bc – bd

Let,

a= x3, b= y3, c= x2, d= y2

Now,

= x3 × (x2 + y2) – y3 × (x2 + y2)

= [(x3 × x2) + (x3 × y2)] – [(y3 × x2) + (y3 × y2)]

= [x5 + x3y2 – y3x2 – y5]

639.

(P + q) (P2 – pq + q2) = ……………….. A) p3 + q B) p – q2 C) p2 + q2 D) p3 + q3

Answer»

Correct option is  D) p3 + q3

Correct option is (D) p3 + q3

\((p+q)(p^2-pq+q^2)\) \(=p^3-p^2q+pq^2+p^2q-pq^2+q^3\)

\(p^3+q^3\).

640.

Use the identify (a -b)2 = a2 – 2ab + b2 to compute.(x – 6)2

Answer»

(a – b)2 = a2 – 2ab + b2 

Here a = x, b = 6 

(x – 6)2 = x2 – (2)(x)(6) + 62 

= x2 – 12x + 36

641.

Find the product:((3/4)a + (2/3)b) (4a + 3b)

Answer»

((3/4)a + (2/3)b) (4a + 3b)

Suppose (a – b) and (c – d) are two binomials. By using the distributive law of multiplication over addition twice, we may find their product as given below.

(a + b) × (c + d) = a × (c + d) + b × (c + d) = (a × c + a × d) + (b × c + b × d)

= ac + ad + bc + bd

Let,

a= (3/4)a, b=(2/3)b, c= 4a, d= 3b

Now,

= (3/4)a × (4a + 3b) + (2/3)b × (4a + 3b)

= [((3/4)a × 4a) + ((3/4)a + 3b)] – [((2/3)b × 4a) + ((2/3)b × + 3b)]

= [3a2 + (9/4)ab + (8/3)ab + 2b2]

= [3a2 + ((27+32)/12)ab + 2b2]

= [3a2 + (59/12)ab + 2b2]

642.

m3 + m2 n – n2 m – n3 = ……………….. A) (m2 – n2 ) (m + n) B) (m – n) (m2 + n2 ) C) (m + n) (m – 1) D) None

Answer»

A) (m2 – n2 ) (m + n)

643.

Evaluate using the identity (a + b)2 = a2 + 2ab + b2(41)2

Answer»

412 = (40 + 1)2 (a + b)2 = a2 + 2ab + b2 

Here a = 40, b = 1 

(40 + 1)2 = 402 + 2 × 40 × 1 + (1)2 

= 1600 + 80 + 1 

412 = 1681

644.

Evaluate using the identity (a + b)2 = a2 + 2ab + b2532

Answer»

532 = (50 + 3)2 (a + b)2 

= a2 +2ab + b2 

Here a = 50, b = 3 

(50 + 3)2 = 502 + 2 × 50 × 3 + (3)

= 2500 + 300 + 9 

532 = 2809

645.

Evaluate using the identity (a + b)2 = a2 + 2ab + b2(3x – 5y)2

Answer»

(a – b)2 = a2 – 2ab + b2 

Here a = 3x, b = 5y 

(3x – 5y)2 = (3x)2 - (2)(3x)(5y) + (5y)2 

= 9x2 – 30xy + 25y2

646.

Evaluate using the identity (a + b)2 = a2 + 2ab + b2(5a – 4b)2

Answer»

(a – b)2 = a2 – 2ab + b2 

Here a = 5a, b = 4b 

(5a – 4b)2 = (5a)2 – (2)(5a)(4b) + (4b)2 

= 25a2 – 40ab + 16b2

647.

Find the product:(x2 – a2) (x – a)

Answer»

 (x2 – a2) (x – a)

Suppose (a – b) and (c – d) are two binomials. By using the distributive law of multiplication over addition twice, we may find their product as given below.

(a – b) × (c – d) = a × (c – d) – b × (c – d) = (a × c – a × d) – (b × c – b × d)

= ac – ad – bc + bd

Let,

a= x2, b= a2, c= x, d= a

Now,

= x2 × (x – a) – a2 × (x – a)

= [(x2 × x) + (x2 × -a)] – [(a2 × x) + (a2 × -a)]

= [x3 – x2a – a2x + a3]

648.

Find the product:(2x2 – 5y2) (x2 + 3y2)

Answer»

(2x2 – 5y2) (x2 + 3y2)

Suppose (a – b) and (c + d) are two binomials. By using the distributive law of multiplication over addition twice, we may find their product as given below.

(a – b) × (c + d) = a × (c + d) – b × (c + d) = (a × c + a × d) – (b × c + b × d)

= ac + ad – bc – bd

Let,

a= 2x2, b= 5y2, c= x2, d= 3y2

Now,

= 2x2 × (x2 + 3y2) – 5y2 × (x2 + 3y2)

= [(2x2 × x2) + (2x2 × 3y2)] – [(5y2 × x2) + (5y2 × 3y2)]

= [2x4 + 6x2y2 – 5y2x2 – 15y4]

= [2x4 + x2y2 – 15y4]

649.

Find:i) 922 – 82ii) 9842 – 162

Answer»

i) 922 – 82 is in the form of 

a2 – b2 = (a + b) (a – b).

922 – 82 = (92 + 8)(92 – 8)

= 100 × 84

= 8400

ii) 9842 – 162 = (984 + 16) (984 – 16)

= (1000) (968) [∵ (a + b)(a – b) = a2 – b2]

= 9,68,000

650.

– 5 p2 × – 2p = ……………… A) 10p3 B) 10p C) – 10p3 D) – 8p3

Answer»

Correct option is  A) 10p3

Correct option is (A) 10p3

\(–5\,p^2\times-2p\) \(=(–5\times-2)\times(p^2\times p)\)

\(10p^3\).