Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

501.

Subtract the sum of 13x – 4y + 7z and – 6z + 6x + 3y from the sum of 6x – 4y – 4z and   2x + 4y – 7.

Answer»

First we have to find the sum of 13x – 4y + 7z and – 6z + 6x + 3y

Therefore, sum of (13x – 4y + 7z) and (–6z + 6x + 3y)

= (13x – 4y + 7z) + (–6z + 6x + 3y)

= (13x – 4y + 7z – 6z + 6x + 3y)

= (13x + 6x – 4y + 3y + 7z – 6z)

= (19x – y + z)

Now we have to find the sum of (6x – 4y – 4z) and (2x + 4y – 7)

= (6x – 4y – 4z) + (2x + 4y – 7)

= (6x – 4y – 4z + 2x + 4y – 7)

= (6x + 2x – 4z – 7)

= (8x – 4z – 7)

Now, required expression = (8x – 4z – 7) – (19x – y + z)

= 8x – 4z – 7 – 19x + y – z

= 8x – 19x + y – 4z – z – 7

= –11x + y – 5z – 7

502.

Sum of 18ab, -5ab, 12ab isA) 25abB) 26abC) 30abD) 20ab

Answer»

Correct option is  A) 25ab

18ab + (-5ab) + 12ab = 30ab - 5ab = 25ab

503.

Subtract:6x3 −7x2 + 5x − 3 from 4 − 5x + 6x2 − 8x3

Answer»

Given 6x−7x+ 5x − 3 and 4 − 5x + 6x2 − 8x3

= (4 – 5x + 6x2 – 8x3) – (6x3 – 7x2 + 5x – 3)

= 4 – 5x + 6x2 – 8x3 – 6x3 + 7x2 – 5x + 3

= – 8x3– 6x3 + 7x2 + 6x2– 5x – 5x + 3 + 4

= – 14x3 + 13x2 – 10x + 7

504.

Find the following products:\(\frac{7}{5}x^2y(\frac{3}{5}xy^2+\frac{2}{5}x)\)

Answer»

\(\frac{7}{5}(\frac{3}{5}x^3y^3+\frac{2}{5}x^3y)\)

\(\frac{21}{25}x^3y^3+\frac{14}{25}x^3y\)

505.

Find the following products:\(250.5xy(xz+\frac{y}{10})\)

Answer»

250 × 5 (x2yz + \(\frac{xy\times y}{10}\))

= 250 (5x2yz + \(\frac{x\times y\times y}{2}\))

= 250 × 5x2yz + 125xy2

506.

Find the product:(7a + 9b) (7a – 9b)

Answer»

(7a + 9b) (7a – 9b)

= (7a)2 – (9b)2

= 49a2 – 81b2

507.

Find each of the following products:\(-3a^{2}\times 4b^{4}\)

Answer»

-3 × 4 – a2 × b2

= -12 × a2 × b2

= -12a2b2

508.

Find each of the following products:\(\frac{1}{2}xy\times \frac{2}{3}x^{2}yz^{2}\)

Answer»

\(\frac{1}{2}\times \frac{2}{3}\times x\times x^{2}\times y\times y\times z^{2}\)

\(\frac{1}{3}\times x^{3}\times y^{2}\times z^{2}\)

\(\frac{1}{3}x^{3}y^{2}z^{2}\)

509.

Subtract 6x2 y from 4x2 yA) -2x2 yB) 2x2 yC) 10x2 yD) -10x2 y

Answer»

Correct option is A) -2x2 y

4x2y - 6x2y = (4 - 6)x2y = -2x2y

510.

Simplify(3x + 2y)2 - (3x – 2y)2

Answer»

The given expression is (3x + 2y)2 - (3x – 2y)2

We have,

(3x + 2y)2 = (3x)2 + 2.3x.2y + (2y)2

= 9x2 + 12xy + 4y2

and

(3x-2y)2 = (3x)2-2.3x.2y + (2y)2

= 9x2-12xy + 4y2

Therefore,

(3x + 2y)2 - (3x – 2y)2 = 9x2 + 12xy + 4y2-9x2 + 12xy-4y2

= 24xy

511.

Find each of the following products:\((-5xy)\times (-3x^{2}yz)\)

Answer»

(-5) × (-5) × x × x2 × y × y × z

= 15 × x3 × y2 × z

= 15x3y2z

512.

Use the identity (x + a) (x + b) = x2 + (a + b) x + ab to find the following products:(i) (x + 1) (x + 2)(ii) (3x + 5) (3x + 1)(iii) (4x – 5) (4x – 1)(iv) (3a + 5) (3a – 8)(v) (xyz – 1) (xyz – 2)

Answer»

(i) (x + 1) (x + 2)
= x2 + (1 + 2)x + 1 × 2 (Using given identity)
= x2 + 3x + 2

(ii) (3x + 5) (3x + 1)
= (3x)2 + (5 + 1) 3x + 5 x 1 (Using given identity)
= 9x2 + 18x + 5

(iii) (4x – 5) (4x – 1)
= {4x + (- 5)} {4x + {- 1)}
= (4x)2 + {(- 5) + (- 1)} 4x + (- 5) (- 1) (Using given identity)
= 16x2 + (- 6) 4x + (5)
= 16x2 – 24x + 5

(iv) (3a + 5) (3a – 8)
= (3a + 5) {3a + (- 8)}
= (3a)2 + {5 + (- 8)} 3a + (5) (- 8) (Using given identity)
= 9a2 + (- 3) 3a – 40
= 9a2 – 9a – 40

(v) {xyz – 1) (xyz – 2)
= {xyz + {- 1)} {xyz + {- 2)}
= {xyz)2 + {(- 1) + (- 2)} xyz + (- 1) (- 2)
= x2y2z2 – 3xyz + 2

513.

Subtract the second expression from the first expression:2l2 – 3lm + 5m2, 3l2 – 4lm + 6m2

Answer»

Let A = 2l2 – 3lm + 5m2 and 

B = 3l2 – 4lm + 6m2 

A – B = A + (- B) 

Additive inverse of B is 

– B = – (3t2 – 4lm + 6m2

= – 3l2 + 4lm – 6m2 

∴ A – B = A + (- B) 

= (2l2 – 3lm + 5m2 ) + (- 3l2 + 4lm – 6m2 )

= 2l2 – 3lm + 5m2 – 3l2 + 4lm – 6m2 

= 2l2 – 3l2 – 3lm + 4lm + 5m2 – 6m2

= (2 – 3)l2 + (- 3 + 4)lm + (5 – 6)m2 

= (- 1) l2 + 1 lm + (- 1)m2 

∴ A – B = – l2 + lm – m2

514.

Product of the following monomials 4p, – 7q3, –7pq is(a) 196 p2q4 (b) 196 pq4 (c) – 196 p2q4 (d) 196 p2q3

Answer»

(a) 196 p2q4

= 4p × (– 7q3) × (–7pq)

= (4 × (-7) × (-7)) × p × q3 × pq

= 196p2q4

515.

The sum of –7pq and 2pq is(a) –9pq (b) 9pq (c) 5pq (d) – 5pq

Answer»

(d) – 5pq

The given two monomials are like terms.

Then sum of -7pq and 2pg = – 7pq + 2pq

= (-7 + 2) pq

= -5pq

516.

Which of the following are like terms?A) { – 2 xy2 ,5x2 y}B) {7p, – 2p, 3p}C) {4 xyz, – 5x2 yz}D) {lmn2 , l2 mn. lm2 n}

Answer»

Correct option is B) {7p, – 2p, 3p}

Like terms have the the same variables to the same power. It is cleared that only {7p, -2p, 3p} are like terms in all given options.

517.

Simplify:(1.5p + 1.2q)2 – (1.5p - 1.2q)2

Answer»

The given expression is

(1.5p + 1.2q)2 – (1.5p - 1.2q)2

We have

(1.5p + 1.2q)2 = (1.5p)2 + 2(1.5p)(1.2q) + (1.2q)2

and

(1.5p - 1.2q)2 = (1.5p)2-2(1.5p)(1.2q) + (1.2q)

Therefore,

(1.5p + 1.2q)2 – (1.5p - 1.2q)2

= (1.5p)2 + 2(1.5p)(1.2q) + (1.2q)2-(1.5p)2 + 2(1.5p)(1.2q)-(1.2q)2

518.

Simplify:(3x + 2y)2 + (3x – 2y)2

Answer»

The given expression is (3x + 2y)2 + (3x – 2y)2

We have,

(3x + 2y)2 = (3x)2 + 2.3x.2y + (2y)2(Here we apply standard identities)

= 9x2 + 12xy + 4y2

and

(3x-2y)2 = (3x)2-2.3x.2y + (2y)2

= 9x2-12xy + 4y2

Therefore,

(3x + 2y)2 + (3x – 2y)2 = 9x2 + 12xy + 4y2 + 9x2-12xy + 4y2

= 18x2 + 8y2

= 2(9x2 + 4y2)

519.

Multiply:(a2 - b2), (a2 + b2)

Answer»

The multiplication is as follows:

(a2-b2)×(a2 + b2)

= (a2.a2 + a2.b2-b2.a2-b2.b2)

= a4 + a2b2-a2b2-b4

= a4 + 0-b4

= a4-b4

The product is = a4-b4

520.

Identify the terms, their coefficients for each of the following expressions.(i) \(7x^{2}yz-5xy\)(ii) \(x^{2}+x+1\)(iii) \(3x^{2}y^{2}-5x^{2}y^{2}z^{2}+z^{2}\)(iv) 9-ab+bc-ca(v) \(\frac{a}{2}+\frac{b}{2}-ab\)(vi) 0.2x-0.3xy+0.5y

Answer»

(i) \(7x^{2}yz-5xy\)

This equation consists of two terms that are:

\(7x^{2}yz\) and \(-5xy\)

The coefficient of \(7x^{2}yz\) is 7

The coefficient of – 5xy is –5

(ii) \(x^{2}+x+1\)

This equation consists of three terms that are:

\(x^{2},x,1\)

The coefficient of \(x^{2}\) is 1

The coefficient of x is 1

The coefficient of 1 is 1

(iii) \(3x^{2}y^{2}-5x^{2}y^{2}z^{2}+z^{2}\)

This equation consists of three terms that are:

\(3x^{2}y,-5x^{2}y^{2}z^{2}\) and \(z^{2}\)

The coefficient of \(3x^{2}y\) is 3

The coefficient of \(-5x^{2}y^{2}z^{2}\) is -5

The coefficient of \(z^{2}\) is 1

(iv) 9-ab+bc-ca

The termCoefficient
99
-ab-1
bc1
ca-1

 (v)  \(\frac{a}{2}+\frac{b}{2}-ab\) 

The termCoefficient
\(\frac{a}{2}\)1
\(\frac{b}{2}\)1
-ab1

(vi) 0.2x-0.3xy+0.5y

The termCoefficient
0.2x0.2
-0.3xy-0.3
0.5y0.5
521.

Using identity (x + a) (x + b) = x2 + (a + b) x + ab, find the value of following – 201 x 202.

Answer»

201 x 202

= (200 + 1) x (200 + 2)

= (200)2 + (1 + 2) (200) + 1 x 2 (Using given identity)

= 40000 + 600 + 2

= 40602

522.

Multiply: (a + 3b) and (x + 5)

Answer»

(a + 3b) and (x + 5)

= a (x + 5) + 3b (x + 5)

= a × x + a × 5 + 3b × x + 3b × 5

= ax + 5a + 3bx + 3 × 5 × b

= ax + 5a + 3 bx + 15 b

523.

Using identity a2 – b2 = (a + b) (a – b) find the product(i) (2a + 7) (2a – 7)(ii) (p2 + q2) (p2 – q2)

Answer»

(i) (2a + 7) (2a – 7)

= (2a)2 – (1)2

= 22a2 – 72

= 4a2 – 49

(ii) (p2 + q2) (p2 – q2)

= (p2)2 – (q2)2

= p4 – q4

524.

Using proper identity, find the value of (1.2)2 – (0.8)2.

Answer»

(1.2)2 – (0.8)2

= (1.2 + 0.8) (1.2 – 0.8) (Using identity III)

= (2) (0.4)

= 0.8

525.

(x + a) (x + b) = x2 + (a + b) x + ab is a identity.

Answer»

True

(x + a) (x + b) = x² + (a + b) x + ab is a identity.

526.

Multiply: (21m + 3m2) and (3lm – 5m2)

Answer»

(2lm + 3m2) and (3lm – 5m2)

= 2lm (3lm – 5m2) + 3m2 (3lm – 5m2)

= 2lm × 3lm – 2lm × 5m2 + 3m2 × 3lm – 3m2 × 5m2

= (2 × 3) l2m2 – (2 × 5) lm3 + (3 × 3) lm3 – (3 × 5) m4

= 6l2m2 – 10lm3 + 9lm3 – 15m4

= 6l2m2 – lm3 – 15m4

527.

Multiply: (1.5p – 0.5q) and (1.5p + 0.5q)

Answer»

(1.5p – 0.5q) and (1.5p + 0.5q)

= 1.5p (1.5p + 0.5q) – 0.5q (1.5p + 0.5q)

= 1.5p × 1.5p + 1.5p × 0.5q – 0.5q × 1.5p – 0.5q × 0.5q

= 1.5 × p × 1.5 × p + 1.5 × p × 0.5 × q – 0.5 × q × 1.5 × p – 0.5 × q × 0.5 × q

= 1.5 × 1.5 × p × p + 1.5 × 0.5 × p × q – 0.5 × 1.5 × q × p – 0.5 × 0.5 × q × q

= 2.25 × p2 + 0.75 × pq – 0.75 × qp – 0.25 × q2

= 2.25p2 + 0.75pq – 0.75pq – 0.25q2

= 2.25p2 – 0.25q2

528.

The value of 64a3 + 48a2b + 12a2b+b3 at a= 1 and b = -1 is(a) 25 (b) 125 (c) 27 (d) 54

Answer»

(c) 27

64a3 + 48a2b + 12a2b + b3

⇒ (4a + b)3   [∴ (a + b)2 = a3 + b3 + 3a2b + 3ab2]

∴ Reqd. value = (4-1)3 = 33 = 27.

529.

Multiply:-7pq2r3, -13p3q2r

Answer»

The multiplication is as follows:

(-7pq2r3) ×(-13p3q2r)

= (-7×-13×3)×(pq2r3.pq2r)(Here dot implies multiplication)

= (273)×(p2q4r4)

= 273p4q4r4

The product is = 273p4q4r4

530.

Add the following expressions:(i) x3 -2x2y + 3xy2– y3, 2x3– 5xy2 + 3x2y – 4y3(ii) a4 – 2a3b + 3ab3 + 4a2b2 + 3b4, – 2a4 – 5ab3 + 7a3b – 6a2b2 + b4

Answer»

(i) Given x3 -2x2y + 3xy2– y3, 2x3– 5xy2 + 3x2y – 4y3

Collecting positive and negative like terms together, we get

= x3 +2x– 2x2y + 3x2y + 3xy2 – 5xy2 – y3– 4y3

= 3x3 + x2y – 2xy– 5y3

(ii) Given a4 – 2a3b + 3ab3 + 4a2b+ 3b4, – 2a4 – 5ab3 + 7a3b – 6a2b+ b4

= a4 – 2a3b + 3ab3 + 4a2b2 + 3b4 – 2a4 – 5ab+ 7a3b – 6a2b2 + b4

Collecting positive and negative like terms together, we get

= a4 – 2a4– 2a3b + 7a3b + 3ab3 – 5ab3 + 4a2b2 – 6a2b+ 3b4 + b4

= – a+ 5a3b – 2ab3 – 2a2b+ 4b4

531.

Multiply:(2x – 2y - 3), (x + y + 5)

Answer»

The multiplication is as follows:

(2x-2y-3)×(x + y + 5)

= 2x.x + 2x.y + 2x.5-2y.x-2y.y-2y.5-3.x-3.y-3.5

= 2x2 + 2xy + 10x-2xy-2y2-10y-3x-3y-15

= 2x2-2y2 + 7x-7y-15

The product is = 2x2-2y2 + 7x-7y-15

532.

Multiply:(3x2 + 5x - 8), (2x2 – 4x + 3)

Answer»

The multiplication is as follows:

(3x2 + 5x-8)×(2x2-4x + 3)

= 3x2.2x2-4x.3x2 + 3x2.3 + 5x.2x2-4x.5x + 5x.3-8.2x2 + 8.4x-8.3

= 6x4-12x3 + 9x3 + 10x3-20x2 + 15x-16x2 + 32x-24

= 6x4 + 7x3-36x2 + 47x-24

The product is = 6x4 + 7x3-36x2 + 47x-24

533.

Find the number of terms in following algebraic expressions.5xy2, 5xy3 – 9x, 3xy + 4y – 8, 9x2 + 2x + pq + q. 

Answer»
Given expressionNo. of terms
5xy21
5xy3 – 9x2
3xy + 4y – 83
9x2 + 2x + pq + q4

534.

Multiply:(x2 – 5x + 6), (2x + 7)

Answer»

The multiplication is as follows:

(x2-5x + 6)×(2x + 7)

= (x2.2x + 7x2-5x.2x-5x.7 + 6.2x + 6.7)

= 2x3 + 7x2-10x2-35x + 12x + 42

= 2x3-3x2-23x + 42

The product is = 2x3-3x2-23x + 42

535.

The sum of first n natural numbers is given by the expression n2/2 + n/2. Factorise this expression.

Answer»

We have, the sum of first n natural numbers

= n2/2 + n/2

Factorasation of given expression = 1/2 (n2 + n) = 1/2n(n  + 1)

536.

Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any category?(i) x+y(ii) 1000(iii) \(x+x^{2}+x^{3}+x^{4}\)(iv)7+a+5b(v) \(2b-3b^{2}\)(vi) \(2y-3y^{2}+4y^{3}\)(vii) 5x-4y+3x(viii) \(4a-15a^{2}\)(ix) xy+yz+zt+tx(x) pqr(xi) \(p^{2}q+pq^{2}\)(xii) 2p+2q

Answer»

(i) x+y

This expression contains two terms x and y

So, it is called ‘Binomial’

(ii) 1000

It contains one term 1000

So, it is called monomial

(iii) \(x+x^{2}+x^{3}+x^{4}\)

It contains four terms

So, it is not a monomial, binomial and trinomial

(iv) 7+a+5b

It contains three terms

So, it is called trinomial

(v) \(2b-3b^{2}\)

It contains two terms

So, it is called binomial

(vi) \(2y-3y^{2}+4y^{3}\)

It contains three terms

So, it is called trinomial

(vii) 5x-4y+3x

8x – 4y

It contains two terms

So, it is called binomial

(viii) \(4a-15a^{2}\)

It contains two terms

So, it is called binomial

(ix) xy+yz+zt+tx

It contains four terms

So, it is not a monomial, binomial and trinomial

(x) pqr

It contains one term

So, it is called monomial

(xi) \(p^{2}q+pq^{2}\)

It contains two terms

So, it is called binomial

(xii) 2p+2q

It contains two terms

So, it is called monomial

537.

Identify the monomials, binomials, trinomials and quadrinomials from the following expressions:(i) a2(ii) a2 − b2(iii) x3 + y3 + z3(iv) x3 + y3 + z3 + 3xyz(v) 7 + 5(vi) a b c + 1(vii) 3x – 2 + 5(viii) 2x – 3y + 4(ix) x y + y z + z x(x) ax3 + bx2 + cx + d

Answer»

(i) Given a2

a2 is a monomial expression because it contains only one term

(ii) Given a2 − b2

a− b2 is a binomial expression because it contains two terms

(iii) Given x3 + y3 + z3

x3 + y3 + z3 is a trinomial because it contains three terms

(iv) Given x+ y+ z3 + 3xyz

x3 + y+ z3 + 3xyz is a quadrinomial expression because it contains four terms

(v) Given 7 + 5

7 + 5 is a monomial expression because it contains only one term

(vi) Given a b c + 1

a b c + 1 is a binomial expression because it contains two terms

(vii) Given 3x – 2 + 5

3x – 2 + 5 is a binomial expression because it contains two terms

(viii) Given 2x – 3y + 4

2x – 3y + 4 is a trinomial because it contains three terms

(ix) Given x y + y z + z x

x y + y z + z x is a trinomial because it contains three terms

(x) Given ax3 + bx2 + cx + d

ax3 + bx2 + cx + d is a quadrinomial expression because it contains four terms

538.

Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories:x + y, 1000, x + x2 + x3 + x4 , 7 + y + 5x, 2y -3y2 , 2y -3y2 + 4y3 , 5x - 4y + 3xy,4z -15z2 , ab + bc + cd + da, pqr, p2q + pq2 , 2p + 2q

Answer»

(i) Since x + y contains two terms. Therefore it is binomial.
(ii) Since 1000 contains one terms. Therefore it is monomial.
(iii) Since x + x2 + x3 + x4 contains four terms. Therefore it is a polynomial and it does not fit in above three categories.
(iv) Since 7 + y + 5x contains three terms. Therefore it is trinomial.
(v) Since 2y -3y2 contains two terms. Therefore it is binomial.
(vi) Since 2y -3y2 + 4y3 contains three terms. Therefore it is trinomial.
(vii) Since 5x - 4y + 3xy contains three terms. Therefore it is trinomial.
(viii) Since 4x -15z2 contains two terms. Therefore it is binomial.
(ix) Since ab+bc +cd + da contains four terms. Therefore it is a polynomial and it does not fit in above three categories.
(x) Since pqr contains one terms. Therefore it is monomial.
(xi) Since p2q + pq contains two terms. Therefore it is binomial.
(xii) Since 2 p + 2q contains two terms. Therefore it is binomial.

539.

Factorise:x4 – 256

Answer»

x4 – 256 = (x2)2 – (16)2 

= (x2 + 16) (x2 – 16) (using a2 – b2 = (a + b) (a – b))

= (x2 + 16) (x2 – 42

= (x2 + 16) (x + 4) (x – 4) (using a2 – b2 = (a + b) (a – b))

540.

Factorise:y2/9 - 9

Answer»

y2/9 - 9

= (y/3)2 - (3)2

= (y/3 + 3)(y/3 - 3) (Since a2 – b2 = (a + b) (a – b))

541.

Multiply: (2x + 5) and (3x – 7)

Answer»

(2x + 5) and (3x – 7)

= 2x(3x – 7) + 5(3x – 7)
= 2x × 3x – 2x × 7 + 5 × 3x – 5 × 7
= 2 × x × 3 × x – 2 × x × 7 + 5 × 3 × x – 35
= 2 × 3 × x × x – 2 × 7 × x + 15 × x – 35
= 6 × x2 – 14 × x + 15x – 35
= 6x2 – 14x + 15x – 35
= 6x2 + x – 35

542.

Put – b in place of b in identity (I). Do you get identity (II)?

Answer»

Identity (I) is

(a + b)2 = a2 + 2ab + b2

We put – b in place of b

{a + (- b)}2 = a2 + 2a (- b) + (- b)2 = (a – b)2 = a2 – 2ab + b2

Which is identity (II). Yes, we get identity (II).

543.

State with reasons, classify the following expressions into monomials, binomials, trinomials. a + 4b, 3x2 y, px2 + qx + 2, qz2, x2 + 2y, 7xyz, 7x2 + 9y3 – 10z4, 3l2 – m2, x, – abc.

Answer»
ExpressionsType of the Expression Reason
x, 7xyz, 3x2 y, qz2, – abcMonomialOne term
a + 4b, x2 + 2y, 3l2 – m2BinomialTwo unlike terms
px2 + qx + 2, 7x2 + 9y3 – 10z4TrinomialThree unlike terms

544.

Factorise : (5x – y)3  + ( y – 4z)3  + (4z –5x)3

Answer»

Let a = 5x – y, b = y – 4z, c= 4z – 5x

a + b + c = 5x - y + y - 4z + 4z - 5x = 0

∴ a3 + b3 + c3 = 3abc

⇒ (5x - y)3 + (y - 4z)3 + (4z - 5x)3 + (4z - 5x)3 = 3(5x - y)(y - 4z)(4z - 5x)

545.

Classify the following algebraic expressions as monomials, binomials, trinomials or polynomials.i. 7x ii. 5y – 7z iii. 3x3 – 5x2 – 11 iv. 1 – 8a – 7a2 – 7a3 v. 5m – 3 vi. a vii. 4 viii. 3y2 – 7y + 5

Answer»

i. Monomial 

ii. Binomial 

iii. Trinomial 

iv. Polynomial 

v. Binomial 

vi. Monomial

vii. Monomial 

viii. Trinomial

546.

Multiply:(pq- 2r), (pq- 2r)

Answer»

The multiplication is as follows:

(pq-2r)×(pq-2r)

= (pq.pq-2pq.r-2pq.r + 2r.2r)

= p2q2-4pqr + 2r2

The product is = p2q2-4pqr + 2r2

547.

Fill in the blanks to make the statement true:Factorised form of 18 mn + 10 mnp is ________.

Answer»

Factorised form of 18 mn + 10 mnp is 2mn (9 + 5p)

= (2 × 9 × m × n) + (2 × 5 × m × n × p)

= 2mn (9 + 5p)

548.

State whether the statements are true (T) or false (F)Factorised form of p2 + 30p + 216 is (p + 18) (p - 12).

Answer»

False

Factorizing the equation p2 + 30p + 216, by splitting the middle term of the equation:

p2 + 30p + 216 = p2 + 18p + 12p + 216 [∵, (18p + 12p) = 30p & (18p × 12p) = 216p2)

⇒ p2 + 30p + 216 = p (p + 18) + 12 (p + 18)

⇒ p2 + 30p + 216 = (p + 12) (p + 18)

But, (p + 12)(p + 18) ≠ (p + 18)(p – 12)

549.

The factorised form of 3x – 24 is(a) 3x × 24 (b) 3 (x – 8) (c) 24 (x – 3) (d) 3(x – 12)

Answer»

(b) 3 (x – 8)

The factorised form of 3x – 24 is,

Take out 3 as common,

= 3 (x – 8)

550.

Factorise:a3 – 4a2 + 12 – 3a

Answer»

a3 – 4a2 + 12 – 3a 

= a2 (a – 4) – 3a + 12 

= a2 (a – 4) – 3 (a – 4) 

= (a – 4) (a2 – 3)