Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

551.

Simplify:pqr (p2 + q2 + r2)

Answer»

– pqr (p2 + q2 + r2

= – (pqr) × p2 – (pqr) × q2 – (pqr) × r2 

= – p3qr – pq3r – pqr3

552.

Give five different examples of numeric and algebraic expression. Then categorize them into monomials, binomials and trinomials.

Answer»

5 Numeral expressions are 4, 100, – 17, 0, 2/3
5 algebric expressions are— 

2y2, 3x2 – 5, 13 – y + y2, 4p2q – 3pq2 + 5, xy + 4

Monomial Expressions—2y2

Binomial Expressions—3x2 – 5, xy + 4

Trinomial Expressions—13 – y + y2, 4p2q – 3pq2 + 5

553.

Find the product of the following pairs of monomials.(i) 3 × 5x(ii) – 5p, – 2q(iii) 7l2, – 3n2(iv) 6m, 3n(v) – 5x2, – 2x

Answer»

(i) 3 × 5x

= 3 × 5 × x

= 15x

(ii) – 5p,- 2q

= (- 5) × p × (- 2) × q

= (- 5) × (- 2) × p × q

= 10pq

(iii) 7l2, – 3n2

= 7 × l2 × (- 3) × n2

= 7 × (- 3) × l2 × n2

= – 21l2n2

(iv) 6m, 3n

= 6 × m × 3 × n

= 6 × 3 × m × n

= 18 mn

(v) – 5x2, – 2x

= (- 5) × x2 × (- 2) × x

= (- 5) × (- 2) × x2 × x

= 10x3

554.

Factorise : (5x –3)2  – (5x –3) – 20(a) (5x + 8)(5x – 1) (b) (5x – 8)(5x + 1) (c) (5x – 8) (5x – 1) (d) (5x + 8)(5x + 1)

Answer»

(b) (5x - 8)(5x + 1)

(5x –3)2  – (5x –3) – 20

Let (5x - 3) = a. Then, the expression becomes

a2 - a - 20 = a2 - 5a + 4a - 20

= a(a - 5) + 4(a - 5) = (a - 5)(a + 4)

= (5x - 3 - 5)(5x - 3 + 4)

= (5x - 8)(5x + 1)

555.

Express each of the following products as a monomials and verify the result in each case for x=1:(3x) x (4x) x (-5x)

Answer»

3 × 4 × -5 × x × x × x

= -60 × x3

= -60x3

556.

Factorised form of p2 – 17p – 38 is(a) (p – 19) (p + 2) (b) (p – 19) (p – 2)(c) (p + 19) (p + 2) (d) (p + 19) (p – 2)

Answer»

(a) (p – 19) (p + 2)

Factorised form of p2 – 17p – 38 is = p2 – 19p + 2p – 38

Take out the common factors,

= p (p – 19) + 2 (p – 19)

Again take out the common factor,

= (p – 19) (p + 2)

557.

Simplify:(px + qy) (ax – by)

Answer»

(px + qy) (ax – by) 

= px (ax – by) + qy (ax – by) 

= apx2 – pbxy + aqxy – qby2

558.

Factorise:21x2y3 + 27x3y2

Answer»

21x2y3 + 27x3y

= 3 × 7 × x × x × y × y × y + 3 × 3 × 3 × x × x × x × y × y 

= 3 × x × x × y × y (7y + 9x) (Using ab + ac = a (b + c)) 

= 3x2y2 (7y + 9x)

559.

The product of a monomial and a binomial is a(a) monomial (b) binomial(c) trinomial (d) none of these

Answer»

(b) binomial

Let monomial = 2x, binomial = x + y

Then, product of a monomial and a binomial = (2x) × (x + y)

= 2x2 + 2xy

560.

Multiply the following monomials(i) xy, x2y, xy, x(ii) m, n, mn, m3n, mn3(iii) kl, lm, km, klm

Answer»

(i) xy, x2y, xy, x

xy × x2y × xy × x
= x × y × x × x × y × x × y × x
= x × x × x × x × x × y × y × y
= x5 × y3
= x5y3

(ii) m, n, mn, m3n, mn3

m × n × mn × m3n × mn3

= m × n × m × n × m × m × m × n ×m × n × n × n
= m × m × m × m × m × m × n × n × n × n × n × n
= m6 × n6
= m6n6

(iii) kl, lm, km, klm

kl × lm × km × klm

= k × l × l × m × k × m × k × l × m
= k × k × k × l × l × l × m × m × m
= k3 × l3 × m3
= k3l3 × m3
= k3l3m3

561.

9k2 + 24 kl + 16 l2 = ……………… A) (9 k + 3l)2 B) (3k + 4l) (3k + 4l) C) (3 k – 4l)2 D) None

Answer»

B) (3k + 4l) (3k + 4l)

Correct option is (B) (3k + 4l) (3k + 4l)

\(9k^2+24\,kl+16\,l^2\) \(=(3k)^2+2\times3k\times4l+(4l)^2\)

\(=(3k+4l)^2\)

= \((3k+4l)(3k+4l)\).

562.

Find the product: (i) (x + y)(2x – 5y + 3xy) (ii) (mn – kl + km) (kl – lm)

Answer»

i) (x + y) (2x – 5y + 3xy)

= x(2x – 5y + 3xy) + y(2x – 5y + 3xy)

= 2x2 – 5xy + 3x2y + 2xy – 5y2 + 3xy2

= 2x2 – 5y2 – 3xy + 3x2y + 3xy2

ii) (mn – kl + km) (kl – lm)

= kl(mn – kl + km) – lm(mn – kl + km)

= klmn – k2l2 + k2lm – lm2n + kl2m – klm2

563.

Multiply the binomials: (i) 2a – 9 and 3a + 4 (ii) x – 2y and 2x – y (iii) kl + lm and k – l (iv) m2 – n2 and m + n

Answer»

i) 2a – 9 and 3a + 4

= (2a – 9) (3a + 4) 

= 2a (3a + 4) – 9(3a + 4)

= 6a2 + 8a – 27a – 36

= 6a2 – 19a – 36

ii) x – 2y and 2x – y

= (x – 2y) (2x – y) 

= x(2x – y) – 2y(2x – y)

= 2x2 – xy – 4xy + 2y2

= 2x2 – 5xy + 2y2

iii) kl + lm and k – l

= (kl + lm) (k – l) 

= kl(k – l) + lm(k – l)

= k2l – l2k + klm – l2m

iv) m2 – n2 and m + n

= (m2 – n2) (m + n) 

= m2(m + n) – n2(m + n)

= m3 + m2n – n2m – n3

564.

Factorise :  a2 + \(\frac1{a^2}\) + 3 -2a - \(\frac2a\)

Answer»

(d) \(\big(a+\frac1a-1\big)^2\)

\(a^2 + \frac1{a^2}+3-2a-\frac2a\) 

\(a^2 + \frac1{a^2}+1+2-2a-\frac2a\)

\((a)^2+\big(\frac1a\big)^2+(-1)^2+2\times{a}\times\frac1a+2\times{a}\times(-1)+2\times\frac1a\times-1\)

\(\big(a+\frac1a-1\big)^2\)

565.

Factorise :  27 + 125 a3 + 135a + 225 a2(a) (3 + 5a)(3 + 5a)(3 - 5a)(b) (3 - 5a)(3 - 5a)(3 + 5a)(c) (3 + 5a)(3 + 5a)(3 + 5a)(d) (3 - 5a)(3 - 5a)(3 - 5a)

Answer»

(c) (3 + 5a)(3 + 5a)(3 + 5a)

27 + 125a3 + 135a + 225a2

= (3)3 + (5a)3 + 3 x 32 x 5a + 3 x 3 x (5a)2

= (3 + 5a)3

566.

Express each of the following products as a monomials and verify the result in each case for x=1:\((4x^2)\times (-3x)\times (\frac{4}{5}x^3)\)

Answer»

4 × -3 × \(\frac{4}{5}\) × x2 × x × x3

\(\frac{-48}{5}\) × x6

= \(\frac{-48}{5}\)x6

567.

\(\frac{0.86\times0.86\times0.86 + 0.14\times0.14\times0.14}{0.86\times0.86-0.86+0.14+0.14\times0.14}\) is equal to :(a) 1 (b) 0 (c) 2 (d) 10

Answer»

(a) 1

Given exp. = \(\frac{(0.86)^3+(0.14)^3}{(0.86)^2-0.86\times0.14+(0.14)^2}\)

\(\frac{(0.86+0.14)[(0.86)^2-0.86\times0.14+(0.14)^2]}{(0.86)^2-0.86\times0.14+(0.14)^2}\)                  [∴ (a3 + b3) = (a + b)(a2 - ab + b2)]

= 0.86 + 0.14 = 1.

568.

Factorise : x3 - 3x2+3x + 7(a) (x - 1)(x2 - 4x + 7)(b) (x + 1)(x2 - 4x + 7)(c) (x + 1)(x2 + 4x + 7)(d) (x + 1)(x2 + 4x + 7)

Answer»

(b) (x + 1)(x2 - 4x + 7)

x3 - 3x2 + 3x + 7

= x3 - 3x2 +3x - 1 + 8

= (x - 1)3 + (2)3

= (x - 1 + 2)[(x - 1)2 - (x - 1) x 2 + 4)]

= (x + 1)(x2 - 2x + 1 - 2x + 2 + 4)

= (x + 1)(x2 - 4x + 7)

569.

Express each of the following products as a monomials and verify the result in each case for x=1:Evaluate (3.2x6y3) x (2.1x2y2) when x=1 and y=0.5

Answer»

3.2 × 2.1 × x6 × x2 × y3 × y2

= 6.72 × x8 × y5

= 6.72x8y5

Verify:

When x = 1 and y = 0.5

R.H.S = 6.72x3y5

= 6.72 × 18 × 0.55

= 0.21

L.H.S= 3.2 × 16 × (-.5)3 × 2.1 × 12 × 0.52= 0.21

Therefore,

L.H.S = R.H.S

570.

Express each of the following products as a monomials and verify the result in each case for x=1:Find the value of (5x6) x (-1.5x2y3) x (-12xy2) when x = 1,y=0.5

Answer»

5 × -1.5 × -12 × x6 × x2 × x × y3 × y2

= 90 × x9 × y5

= 90x9y5

Verification:

x = 1 and y = 0.5

R.H.S = 90x9y5

= 90 (1)9 (05)5

= 2.8125

L.H.S = 2.8125

Therefore,

L.H.S = R.H.S

571.

Express each of the following products as a monomials and verify the result in each case for x=1:(x2)3 x (2x) x (-4x) x (5)

Answer»

x6 × 2x × (-4x) × 5

= 2 × -4 × 5 × x6 × x × x

= -40 × x8

= -40 x8

572.

Express each of the following products as a monomials and verify the result in each case for x=1:Write down the product of 8x2y6 and-20xy verify the product for x=2.5, y=1

Answer»

-8 × -2 × x2 × x × y6 × y

= 16 × x3 × y7

= 16x3y7

Verification is when,

x = 2.5 and y = 1

R.H.S = 16 (2.5)3 × (1)7

= 16 × 15.625

= 250

L.H.S = -8 × 2.52 × 16 × -20 × 1 × 2.5

= 250

Therefore,

L.H.S = R.H.S

573.

Select a suitable identity and find the following products(i) (7d – 9e)(7d – 9e)(ii) (m2 – n2)(m2 + n2)

Answer»

i) (7d – 9e) (7d – 9e)

= (7d – 9e)2 is in the form of (a – b)2.

= (7d)2 – 2 × 7d × 9e + (9e)2 [ ∵ (a – b)2 = a2 – 2ab + b2]

= 7d × 7d – 126de + 9e × 9e

= 49d2 – 126de + 81e2

ii) (m2 – n2) (m2 + n2) is in the form of (a + b) (a – b).

∴ (a + b) (a – b) = a2 – b2

∴ (m2 + n2) (m2 – n2) = (m2)2 – (n2)2 = m4 – n4

574.

Find the value of (382 - 222)/16 , using a suitable identity.

Answer»

Since a2 – b2 = (a + b) (a – b), therefore 

382 – 222 

= (38 – 22) (38 + 22)

= 16 × 60 

So,

(382 - 222)/16

= (16 x 60)/16

= 60

575.

Subtract:(i) 7a2b from 3a2b(ii) 4xy from -3xy

Answer»

(i) Given 7a2b from 3a2b

= 3a2b -7a2b

= (3 -7) a2b

= – 4a2b

(ii) Given 4xy from -3xy

= –3xy – 4xy

= –7xy

576.

Select a suitable identity and find the following products(i) (3k + 4l)(3k + 4l)(ii) (ax2 + by2)(ax2 + by2)

Answer»

i) (3k + 4l) (3k 4l) = (3k + 4l)2 is in the form of (a + b)2.

= (3k)2 + 2 × 3k × 4l+ (4l)2 [ (a+ b)2 = a2 + 2ab + b2

= 3k × 3k + 24kl + 4l × 4l

= 9k2 + 24kl + 16l2

ii) (ax2 + by2) (ax2 + by2) = (ax2 + by2)2 is in the form of (a + b)2.

= (ax2)2 + 2 × ax2 × by2 + (by2)2   [ ∵ (a + b)2 = a2 + 2ab + b]

= ax2 × ax2 + 2abx2y2 + by2 × by2

= a2x4 + 2ab x2y2 + b2y4

577.

Select a suitable identity and find the following products(i) (3t + 9s) (3t – 9s) (ii) (kl – mn) (kl + mn)

Answer»

i) (3t + 9s) (3t – 9s) = (3t)2 – (9s)2  [ ∵ (a + b) (a – b) = a2 – b2 ]

= 3t × 3t – 9s × 9s

= 9t2 – 81s2

ii) (kl – mn) (kl + mn) = (kl)2 – (mn)2  [ ∵(a + b) (a – b) = a2 – b2 ]

= kl × kl – mn × mn

= k2l2 – m2n2

578.

Evaluate the following by using suitable identities:(i) 3042(ii) 5092

Answer»

i) 3042 = (300 + 4)2 is in the form of (a + b)2.  [∵ (a + b)2 = a2 + 2ab + b]

a = 300, b = 4

(300 + 4)2 = (300)2 + 2 × 300 × 4 + (4)2

= 300 × 300+ 2400 + 4 × 4

= 90,000 + 2400 + 16

= 92,416

ii) 5092 = (500 + 9)2

a  = 500, b = 9

= (500)2 + 2 × 500 × 9 + (9)2     [ ∵ (a + b)2 = a2 + 2ab + b2]

= 500 × 500 + 9000 + 9 × 9

= 2,50,000 + 9000 + 81

= 2,59,081

579.

Factorise : a6  – 26a3  – 27(a) (a - 3)(a + 1)(a2 + a + 1)(a2 + 3a + 9)(b) (a - 3)(a - 1)(a2 + a + 1)(a2 + 3a + 9)(c) (a - 3)(a + 1)(a2 + 3a + 9)(a2 - a + 1)(d) (a + 3)(a 1 1)(a2 + 3a + 9)(a2 + a + 1)

Answer»

(c) (a - 3)(a2 + 3a + 9)(a + 1)(a2 - a + 1)

a6 - 26a3 - 27

= a6 - 27 a3 + a3 - 27

 = a3 (a3 - 24) + 1(a3 - 27)

=(a3 - 27)(a3 + 1)

= (a - 3)(a2 + 3a + 9)(a + 1)(a2 - a + 1)

580.

Find the value of the expression 2x2 – 4x + 5 when x = 0

Answer»

Given expression is 2x2 – 4x + 5

When x = 0, then 

= 2(0)2 – 4(0) + 5 

= 2(0) – 0 + 5 = 0 – 0 + 5 = 5 

When x = 0, then 2x2 – 4x + 5 = 5

581.

The standard form of an expression 8 – 3x2 + 4x is ……………A) – 3x2 + 8 + 4x B) – 3x2 + 4x + 8 C) 4x – 3x2 + 8 D) 8 + 4x – 3x2 

Answer»

Correct option is B) – 3x2 + 4x + 8 

582.

What must be added each of the following expression to make it a whole square?(i) 4x2 - 12x + 7(ii) 4x2 - 20x + 20

Answer»

(i) 4x- 12x + 7

(2x)2 – 2 (2x) (3) + 32 – 32 + 7 

= (2x – 3)2 – 9 + 7

= (2x – 3)2 – 2

Hence, 2 must be added to the expression in order to make a whole square

(ii) 4x- 20x + 20

(2x)2 – 2 (2x) (5) + 52 – 52 + 20 

= (2x – 5)2 – 25 + 20

= (2x – 5)2 – 5

Hence, 5 must be added to the expression in order to make it a whole square

583.

The side length of the top of square table is x. The expression for perimeter is:(a) 4 + x (b) 2x (c) 4x (d) 8x

Answer»

(c) 4x

We know that, perimeter of the square = 4 × side

From the question it is given that, side length of the top of square table is x.

Then, perimeter = 4 × x

= 4x

584.

Select a suitable identity and find the following products(i) (6x + 5)(6x + 6)(ii) (2b – a)(2b +c)

Answer»

i) (6x + 5) (6x + 6) is in the form of (ax + b) (ax + c).

(ax + b) (ax + c) = a2x2 + ax(b + c) + bc

(6x + 5) (6x + 6) = (6)2x2 + 6x (5 + 6) + 5 × 6

= 36x2 + 6x × 11 + 30

= 36x2 + 66x + 30

ii) (2b – a) (2b + c) is in the form of (ax – b) (ax + c).

(ax – b) (ax + c) = a2x2 + ax(c – b) – cb

(2b – a) (2b + c) = (2)2(b)2 + 2b (c – a) – ca

= 4b2 + 2bc – 2ab – ca

585.

Express each of the following products as a monomials and verify the result for x=1, y= 2:\((\frac{1}{8}x^2y^4)\times (\frac{1}{4}x^4y^2)\times (xy)\times 5\)

Answer»

\(\frac{1}{8}\) × \(\frac{1}{4}\) × 5 × x2 × x4 × x × y4 × y2 × y

= \(\frac{5}{32}\) × x6 × y6

= \(\frac{5}{32}\)x6y6

Verification:

When x = 1 and y = 2

R.H.S\(\frac{5}{32}\) × 16 × 26

\(\frac{5}{32}\) × 64

= 5 × 2

= 10

L.H.S\(\frac{1}{8}\) × 12 × 24 × \(\frac{1}{4}\) × 14 × 22 × 1 × 2 × 5

 = 10

Therefore,

L.H.S = R.H.S

586.

Express each of the following products as a monomials and verify the result in each case for x=1:Evaluate (-8x2y6) x (-20xy) for x = 2.5 and y=1.

Answer»

-8 × -20 × x2 × x × y6 × y

= 160x3y7

Verify:

When,

x = 2.5 and y = 1

R.H.S = 160x3y7

= 160 × (2.5)3 × (1)7

= 2500

L.H.S = - 8 × 2.52 × 1 × -20 × 1 × 2.5

= 2500

Therefore,

L.H.S = R.H.S

587.

Express each of the following products as a monomials and verify the result for x=1, y= 2:(-xy3) x (yx3) x (xy)

Answer»

-x × x3 × x × y3 × y × y

= -x5y5

Verify:

When x = 1 and y = 2

R.H.S = -x5y5

= (-1)5 × 25

= -1 × 32

= -32

L.H.S = (-1) × 23 × 2 × 13 × 1 × 2

= -32

Therefore,

L.H.S = R.H.S

588.

Find each of the following products:\((\frac{7}{9}ab^{2})\times (\frac{15}{7}ac^{2}b)\times (-\frac{3}{5}a^{2}c)\)

Answer»

\(\frac{7}{9}\times \frac{15}{7}\times \frac{-3}{5}\) x a x a x a2 x b2 x b x c2 x c

= -a4 x b3 x c3

= -a4b3c3

589.

What should be added to 1 + 2x – 3x2 to get x2 – x – 1?

Answer»

Let the added algebraic expression may be ‘A say

(1 + 2x – 3x2) + A = x2 – x – 1

=A =(x2 – x – 1) – (1 + 2x – 3x2)

= x2 – x – 1 – 1 – 2x + 3x2

= (x2 + 3x2) + ( – x – 2x) +( – 1 – 1)

∴ A = 4x2 – 3x – 2

∴ The required added expression (A) 

= 4x2 – 3x – 2

590.

Find the square root of : 4a2 + 9b2 + c2 - 12ab + 6bc - 4ac(a) (2a + 3b - c)(b) (2a - 3b + c)(c) (-2a + 3b + c)(d) (-2a + 3b + c)

Answer»

(c) (-2a + 3b + c)

4a2 + 9b2 + c2 - 12ab + 6bc - 4ac

= (-2a)2 + (3b)2 + c2 + 2 x (-2a) x 3b + 2 x 3b x c + 2 x (-2a) x c

= (-2a + 3b + c)2

∴ Reqd. sq. root = –2a + 3b + c

591.

Factors of (2x – 3y)3  + (3y – 5z)3  + (5z – 2x)3 are :(a) 3(2x - 3y)(3y - 5z)(5z - 2x)(b) 3(3x - 2y)(3y - 5z)(5z - 2x)(c) 3(2x - 3y)(5y - 3z)(5z - 2x)(d) 3(2x - 3y)(3y - 5z)(2z - 5x)

Answer»

(a) 3(2x - 3y)(3y - 5z)(5z - 2x)

Since (2x - 3y) + (3y - 5z) + (5z - 2x) = 0

(2x - 3y)3 + (3y - 5z)3 + (5z - 2x)

= 3(2x - 3y)(3y - 5z)(5z - 2x)

592.

Add the following like terms. (i) 12ab, 9ab, ab(ii) 10x2, – 3x2, 5x2(iii) – y2, 5y2, 8y2, – 14y2(iv) 10mn, 6mn, – 2mn, – 7mn

Answer»

(i) Sum of 12ab, 9ab, ab

= 12ab + 9ab + ab 

= (12 + 9 + 1) ab 

= 22 ab.

(ii) Sum of 10x2, – 3x2, 5x2

= 10x2 + (- 3x2 ) + 5x2 

= 10x2 – 3x2 + 5x2 

= (10 – 3 + 5) x2 

= 12x2

(iii) Sum of – y2, 5y2, 8y2, – 14y2

= – y2 + 5y2 + 8y2 + (- 14y2

= – 1y2 + 5y2 + 8y2 – 14y2 

= (- 1 + 5 + 8 – 14) y2

= – 2y2

(iv) Sum of 10mn, 6mn, – 2mn, – 7mn

= 10mn + 6mn + (- 2mn) + (- 7mn) 

= 10mn + 6mn – 2mn – 7mn 

= (10 + 6 – 2 – 7) mn 

= 7mn

593.

The sum of three expressions is 8 + 13a + 7a2. Two of them are 2a2 + 3a + 2 and 3a2 – 4a + 1. Find the third expression.

Answer»

Given that f he sum of 3 expressions is 8 + 13a + 7a2 ……………..(1)

Two of them are 2a2 + 3a + 2 and 3a2 – 4a + 1.

∴ The sum of above two expressions (2a2 + 3a + 2) + (3a2 – 4a + 1)

= 2a2 + 3a + 2 + 3a2 – 4a + 1.

= (2a2 + 3a2) + (3a – 4a) + (2 + 1)

= 5a2 – a + 3

∴ The required 3rd expression (1) – (2)

(1) – (2) =(7a2 + 13a + 8) – (5a2 – a + 3) 

= 7a2 + 13a + 8 – – 5a2 – a – 3

=(7a2 – 5a2) +(13a + a)+ (8 – 3)

= 2a2 + 14a + 5

594.

Find the value of the expression 2x2 – 4x + 5 when x = 1

Answer»

Given expression is 2x2 – 4x + 5

When x = 1, then 

= 2(1)2 – 4(1) + 5 

= 2 × 1 – 4 + 5 

= 2 – 4 + 5 = 3 

When x = 1, then 2x2 – 4x + 5 = 3

595.

Show that(i) (3x + 7)2 − 84x = (3x − 7)2 (ii) (9p − 5q)2 + 180pq = (9p + 5q)2

Answer»

(i) L.H.S = (3x + 7)2 − 84x

= (3x)2 + 2(3x)(7) + (7)2 − 84x

= 9x2 + 42x + 49 − 84x

= 9x2 − 42x + 49

R.H.S = (3x − 7)2 = (3x)2 − 2(3x)(7) +(7)2

= 9x2 − 42x + 49

L.H.S = R.H.S

(ii) L.H.S = (9p − 5q)2 + 180pq

= (9p)2 − 2(9p)(5q) + (5q)2 − 180pq

= 81p2 − 90pq + 25q2 + 180pq

= 81p2 + 90pq + 25q2

= (9p)2 + 2(9p)(5q) + (5q)2

= 81p2 + 90pq + 25q2

L.H.S = R.H.S

596.

Find the products:2a2b × (-5)ab2c × (-6)bc2

Answer»

2a2b × (-5)ab2c × (-6)bc2

The coefficient of the product of two monomials is equal to the product of their coefficients.

The variable part in the product of two monomials is equal to the product of the variables in the given monomials.

Then,

= [(2) × (-5) × (-6)] × (a× a) × (b × b× b) × (c × c2)

= [60] × (a2+1) × (b1+2+1) × (c1+2) … [∵ am × an = am+n]

= [60] × (a3) × (b4) × (c3)

= [60]a3b4c3

597.

Express each of the following products as a monomials and verify the result for x=1, y= 2:\((-\frac{4}{7}a^2b)\times (-\frac{2}{3}b^2c)\times (-\frac{7}{6}c^2a)\)

Answer»

\(\frac{-4}{7}\) × \(\frac{-2}{3}\) × \(\frac{-7}{6}\)× a2 × a × b × b2 × c × c2

= \(\frac{-4}{9}\)× a3 × b3 × c3

= \(\frac{-4}{9}\)a3b3c3

598.

Factorise : 27a3  – b3  – 1 – 9ab(a) (3a + b - 1)(9a2 + b2 + 1 - 3ab + 3a - b)(b) (3a - b - 1)(9a2 - b2 + 1 + 3ab + 3a - b)(c) (3a + b + 1)(9a2 + b2 + 1 + 3ab + 3a - b)(d) (3a - b - 1)(9a2 + b2 + 1 + 3ab + 3a - b)

Answer»

(d) (3a - b - 1)(9a2 + b2 + 1 + 3ab + 3a - b)

27a3 - b3 - 1 - 9ab

= (3a)3 + (-b)3 + (-1)3 - 3 x 3a x (-b) x (-1)

= [3a + (-b) + (-1)][(-3a)2 + (-b)2 + (-1)2 - 3a x (-b) - (-b) x (-1) - 3a x (-1)]

 = (3a - b - 1)(9a2 + b2 + 1 + 3ab + b - 3a)

[∴ a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)]

599.

Find the following products:2a3(3a+5b)

Answer»

2a(3a + 5b)

= 2a3 × 3a + 2a2 × 5b

= 6 × a4 + 10a3b

600.

Find each of the following products:\((\frac{-24}{25}x^{3}z)\times (-\frac{15}{16}xz^{2}y)\)

Answer»

\(\frac{-24}{25}\times \frac{-15}{16}\times x^{3}\times x\times z\times z^{2}\times y\)

\(\frac{18}{20}\times x^{4}\times z^{3}\times y\)

\(\frac{9}{10}x^4z^3y\)