

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
551. |
Simplify:pqr (p2 + q2 + r2) |
Answer» – pqr (p2 + q2 + r2) = – (pqr) × p2 – (pqr) × q2 – (pqr) × r2 = – p3qr – pq3r – pqr3 |
|
552. |
Give five different examples of numeric and algebraic expression. Then categorize them into monomials, binomials and trinomials. |
Answer» 5 Numeral expressions are 4, 100, – 17, 0, 2/3 2y2, 3x2 – 5, 13 – y + y2, 4p2q – 3pq2 + 5, xy + 4 Monomial Expressions—2y2 Binomial Expressions—3x2 – 5, xy + 4 Trinomial Expressions—13 – y + y2, 4p2q – 3pq2 + 5 |
|
553. |
Find the product of the following pairs of monomials.(i) 3 × 5x(ii) – 5p, – 2q(iii) 7l2, – 3n2(iv) 6m, 3n(v) – 5x2, – 2x |
Answer» (i) 3 × 5x = 3 × 5 × x = 15x (ii) – 5p,- 2q = (- 5) × p × (- 2) × q = (- 5) × (- 2) × p × q = 10pq (iii) 7l2, – 3n2 = 7 × l2 × (- 3) × n2 = 7 × (- 3) × l2 × n2 = – 21l2n2 (iv) 6m, 3n = 6 × m × 3 × n = 6 × 3 × m × n = 18 mn (v) – 5x2, – 2x = (- 5) × x2 × (- 2) × x = (- 5) × (- 2) × x2 × x = 10x3 |
|
554. |
Factorise : (5x –3)2 – (5x –3) – 20(a) (5x + 8)(5x – 1) (b) (5x – 8)(5x + 1) (c) (5x – 8) (5x – 1) (d) (5x + 8)(5x + 1) |
Answer» (b) (5x - 8)(5x + 1) (5x –3)2 – (5x –3) – 20 Let (5x - 3) = a. Then, the expression becomes a2 - a - 20 = a2 - 5a + 4a - 20 = a(a - 5) + 4(a - 5) = (a - 5)(a + 4) = (5x - 3 - 5)(5x - 3 + 4) = (5x - 8)(5x + 1) |
|
555. |
Express each of the following products as a monomials and verify the result in each case for x=1:(3x) x (4x) x (-5x) |
Answer» 3 × 4 × -5 × x × x × x = -60 × x3 = -60x3 |
|
556. |
Factorised form of p2 – 17p – 38 is(a) (p – 19) (p + 2) (b) (p – 19) (p – 2)(c) (p + 19) (p + 2) (d) (p + 19) (p – 2) |
Answer» (a) (p – 19) (p + 2) Factorised form of p2 – 17p – 38 is = p2 – 19p + 2p – 38 Take out the common factors, = p (p – 19) + 2 (p – 19) Again take out the common factor, = (p – 19) (p + 2) |
|
557. |
Simplify:(px + qy) (ax – by) |
Answer» (px + qy) (ax – by) = px (ax – by) + qy (ax – by) = apx2 – pbxy + aqxy – qby2 |
|
558. |
Factorise:21x2y3 + 27x3y2 |
Answer» 21x2y3 + 27x3y2 = 3 × 7 × x × x × y × y × y + 3 × 3 × 3 × x × x × x × y × y = 3 × x × x × y × y (7y + 9x) (Using ab + ac = a (b + c)) = 3x2y2 (7y + 9x) |
|
559. |
The product of a monomial and a binomial is a(a) monomial (b) binomial(c) trinomial (d) none of these |
Answer» (b) binomial Let monomial = 2x, binomial = x + y Then, product of a monomial and a binomial = (2x) × (x + y) = 2x2 + 2xy |
|
560. |
Multiply the following monomials(i) xy, x2y, xy, x(ii) m, n, mn, m3n, mn3(iii) kl, lm, km, klm |
Answer» (i) xy, x2y, xy, x xy × x2y × xy × x (ii) m, n, mn, m3n, mn3 m × n × mn × m3n × mn3 = m × n × m × n × m × m × m × n ×m × n × n × n (iii) kl, lm, km, klm kl × lm × km × klm = k × l × l × m × k × m × k × l × m |
|
561. |
9k2 + 24 kl + 16 l2 = ……………… A) (9 k + 3l)2 B) (3k + 4l) (3k + 4l) C) (3 k – 4l)2 D) None |
Answer» B) (3k + 4l) (3k + 4l) Correct option is (B) (3k + 4l) (3k + 4l) \(9k^2+24\,kl+16\,l^2\) \(=(3k)^2+2\times3k\times4l+(4l)^2\) \(=(3k+4l)^2\) = \((3k+4l)(3k+4l)\). |
|
562. |
Find the product: (i) (x + y)(2x – 5y + 3xy) (ii) (mn – kl + km) (kl – lm) |
Answer» i) (x + y) (2x – 5y + 3xy) = x(2x – 5y + 3xy) + y(2x – 5y + 3xy) = 2x2 – 5xy + 3x2y + 2xy – 5y2 + 3xy2 = 2x2 – 5y2 – 3xy + 3x2y + 3xy2 ii) (mn – kl + km) (kl – lm) = kl(mn – kl + km) – lm(mn – kl + km) = klmn – k2l2 + k2lm – lm2n + kl2m – klm2 |
|
563. |
Multiply the binomials: (i) 2a – 9 and 3a + 4 (ii) x – 2y and 2x – y (iii) kl + lm and k – l (iv) m2 – n2 and m + n |
Answer» i) 2a – 9 and 3a + 4 = (2a – 9) (3a + 4) = 2a (3a + 4) – 9(3a + 4) = 6a2 + 8a – 27a – 36 = 6a2 – 19a – 36 ii) x – 2y and 2x – y = (x – 2y) (2x – y) = x(2x – y) – 2y(2x – y) = 2x2 – xy – 4xy + 2y2 = 2x2 – 5xy + 2y2 iii) kl + lm and k – l = (kl + lm) (k – l) = kl(k – l) + lm(k – l) = k2l – l2k + klm – l2m iv) m2 – n2 and m + n = (m2 – n2) (m + n) = m2(m + n) – n2(m + n) = m3 + m2n – n2m – n3 |
|
564. |
Factorise : a2 + \(\frac1{a^2}\) + 3 -2a - \(\frac2a\) |
Answer» (d) \(\big(a+\frac1a-1\big)^2\) \(a^2 + \frac1{a^2}+3-2a-\frac2a\) = \(a^2 + \frac1{a^2}+1+2-2a-\frac2a\) = \((a)^2+\big(\frac1a\big)^2+(-1)^2+2\times{a}\times\frac1a+2\times{a}\times(-1)+2\times\frac1a\times-1\) = \(\big(a+\frac1a-1\big)^2\) |
|
565. |
Factorise : 27 + 125 a3 + 135a + 225 a2(a) (3 + 5a)(3 + 5a)(3 - 5a)(b) (3 - 5a)(3 - 5a)(3 + 5a)(c) (3 + 5a)(3 + 5a)(3 + 5a)(d) (3 - 5a)(3 - 5a)(3 - 5a) |
Answer» (c) (3 + 5a)(3 + 5a)(3 + 5a) 27 + 125a3 + 135a + 225a2 = (3)3 + (5a)3 + 3 x 32 x 5a + 3 x 3 x (5a)2 = (3 + 5a)3 |
|
566. |
Express each of the following products as a monomials and verify the result in each case for x=1:\((4x^2)\times (-3x)\times (\frac{4}{5}x^3)\) |
Answer» 4 × -3 × \(\frac{4}{5}\) × x2 × x × x3 = \(\frac{-48}{5}\) × x6 = \(\frac{-48}{5}\)x6 |
|
567. |
\(\frac{0.86\times0.86\times0.86 + 0.14\times0.14\times0.14}{0.86\times0.86-0.86+0.14+0.14\times0.14}\) is equal to :(a) 1 (b) 0 (c) 2 (d) 10 |
Answer» (a) 1 Given exp. = \(\frac{(0.86)^3+(0.14)^3}{(0.86)^2-0.86\times0.14+(0.14)^2}\) = \(\frac{(0.86+0.14)[(0.86)^2-0.86\times0.14+(0.14)^2]}{(0.86)^2-0.86\times0.14+(0.14)^2}\) [∴ (a3 + b3) = (a + b)(a2 - ab + b2)] = 0.86 + 0.14 = 1. |
|
568. |
Factorise : x3 - 3x2+3x + 7(a) (x - 1)(x2 - 4x + 7)(b) (x + 1)(x2 - 4x + 7)(c) (x + 1)(x2 + 4x + 7)(d) (x + 1)(x2 + 4x + 7) |
Answer» (b) (x + 1)(x2 - 4x + 7) x3 - 3x2 + 3x + 7 = x3 - 3x2 +3x - 1 + 8 = (x - 1)3 + (2)3 = (x - 1 + 2)[(x - 1)2 - (x - 1) x 2 + 4)] = (x + 1)(x2 - 2x + 1 - 2x + 2 + 4) = (x + 1)(x2 - 4x + 7) |
|
569. |
Express each of the following products as a monomials and verify the result in each case for x=1:Evaluate (3.2x6y3) x (2.1x2y2) when x=1 and y=0.5 |
Answer» 3.2 × 2.1 × x6 × x2 × y3 × y2 = 6.72 × x8 × y5 = 6.72x8y5 Verify: When x = 1 and y = 0.5 R.H.S = 6.72x3y5 = 6.72 × 18 × 0.55 = 0.21 L.H.S= 3.2 × 16 × (-.5)3 × 2.1 × 12 × 0.52= 0.21 Therefore, L.H.S = R.H.S |
|
570. |
Express each of the following products as a monomials and verify the result in each case for x=1:Find the value of (5x6) x (-1.5x2y3) x (-12xy2) when x = 1,y=0.5 |
Answer» 5 × -1.5 × -12 × x6 × x2 × x × y3 × y2 = 90 × x9 × y5 = 90x9y5 Verification: x = 1 and y = 0.5 R.H.S = 90x9y5 = 90 (1)9 (05)5 = 2.8125 L.H.S = 2.8125 Therefore, L.H.S = R.H.S |
|
571. |
Express each of the following products as a monomials and verify the result in each case for x=1:(x2)3 x (2x) x (-4x) x (5) |
Answer» x6 × 2x × (-4x) × 5 = 2 × -4 × 5 × x6 × x × x = -40 × x8 = -40 x8 |
|
572. |
Express each of the following products as a monomials and verify the result in each case for x=1:Write down the product of 8x2y6 and-20xy verify the product for x=2.5, y=1 |
Answer» -8 × -2 × x2 × x × y6 × y = 16 × x3 × y7 = 16x3y7 Verification is when, x = 2.5 and y = 1 R.H.S = 16 (2.5)3 × (1)7 = 16 × 15.625 = 250 L.H.S = -8 × 2.52 × 16 × -20 × 1 × 2.5 = 250 Therefore, L.H.S = R.H.S |
|
573. |
Select a suitable identity and find the following products(i) (7d – 9e)(7d – 9e)(ii) (m2 – n2)(m2 + n2) |
Answer» i) (7d – 9e) (7d – 9e) = (7d – 9e)2 is in the form of (a – b)2. = (7d)2 – 2 × 7d × 9e + (9e)2 [ ∵ (a – b)2 = a2 – 2ab + b2] = 7d × 7d – 126de + 9e × 9e = 49d2 – 126de + 81e2 ii) (m2 – n2) (m2 + n2) is in the form of (a + b) (a – b). ∴ (a + b) (a – b) = a2 – b2 ∴ (m2 + n2) (m2 – n2) = (m2)2 – (n2)2 = m4 – n4 |
|
574. |
Find the value of (382 - 222)/16 , using a suitable identity. |
Answer» Since a2 – b2 = (a + b) (a – b), therefore 382 – 222 = (38 – 22) (38 + 22) = 16 × 60 So, (382 - 222)/16 = (16 x 60)/16 = 60 |
|
575. |
Subtract:(i) 7a2b from 3a2b(ii) 4xy from -3xy |
Answer» (i) Given 7a2b from 3a2b = 3a2b -7a2b = (3 -7) a2b = – 4a2b (ii) Given 4xy from -3xy = –3xy – 4xy = –7xy |
|
576. |
Select a suitable identity and find the following products(i) (3k + 4l)(3k + 4l)(ii) (ax2 + by2)(ax2 + by2) |
Answer» i) (3k + 4l) (3k 4l) = (3k + 4l)2 is in the form of (a + b)2. = (3k)2 + 2 × 3k × 4l+ (4l)2 [ (a+ b)2 = a2 + 2ab + b2 = 3k × 3k + 24kl + 4l × 4l = 9k2 + 24kl + 16l2 ii) (ax2 + by2) (ax2 + by2) = (ax2 + by2)2 is in the form of (a + b)2. = (ax2)2 + 2 × ax2 × by2 + (by2)2 [ ∵ (a + b)2 = a2 + 2ab + b2 ] = ax2 × ax2 + 2abx2y2 + by2 × by2 = a2x4 + 2ab x2y2 + b2y4 |
|
577. |
Select a suitable identity and find the following products(i) (3t + 9s) (3t – 9s) (ii) (kl – mn) (kl + mn) |
Answer» i) (3t + 9s) (3t – 9s) = (3t)2 – (9s)2 [ ∵ (a + b) (a – b) = a2 – b2 ] = 3t × 3t – 9s × 9s = 9t2 – 81s2 ii) (kl – mn) (kl + mn) = (kl)2 – (mn)2 [ ∵(a + b) (a – b) = a2 – b2 ] = kl × kl – mn × mn = k2l2 – m2n2 |
|
578. |
Evaluate the following by using suitable identities:(i) 3042(ii) 5092 |
Answer» i) 3042 = (300 + 4)2 is in the form of (a + b)2. [∵ (a + b)2 = a2 + 2ab + b2 ] a = 300, b = 4 (300 + 4)2 = (300)2 + 2 × 300 × 4 + (4)2 = 300 × 300+ 2400 + 4 × 4 = 90,000 + 2400 + 16 = 92,416 ii) 5092 = (500 + 9)2 a = 500, b = 9 = (500)2 + 2 × 500 × 9 + (9)2 [ ∵ (a + b)2 = a2 + 2ab + b2] = 500 × 500 + 9000 + 9 × 9 = 2,50,000 + 9000 + 81 = 2,59,081 |
|
579. |
Factorise : a6 – 26a3 – 27(a) (a - 3)(a + 1)(a2 + a + 1)(a2 + 3a + 9)(b) (a - 3)(a - 1)(a2 + a + 1)(a2 + 3a + 9)(c) (a - 3)(a + 1)(a2 + 3a + 9)(a2 - a + 1)(d) (a + 3)(a 1 1)(a2 + 3a + 9)(a2 + a + 1) |
Answer» (c) (a - 3)(a2 + 3a + 9)(a + 1)(a2 - a + 1) a6 - 26a3 - 27 = a6 - 27 a3 + a3 - 27 = a3 (a3 - 24) + 1(a3 - 27) =(a3 - 27)(a3 + 1) = (a - 3)(a2 + 3a + 9)(a + 1)(a2 - a + 1) |
|
580. |
Find the value of the expression 2x2 – 4x + 5 when x = 0 |
Answer» Given expression is 2x2 – 4x + 5 When x = 0, then = 2(0)2 – 4(0) + 5 = 2(0) – 0 + 5 = 0 – 0 + 5 = 5 When x = 0, then 2x2 – 4x + 5 = 5 |
|
581. |
The standard form of an expression 8 – 3x2 + 4x is ……………A) – 3x2 + 8 + 4x B) – 3x2 + 4x + 8 C) 4x – 3x2 + 8 D) 8 + 4x – 3x2 |
Answer» Correct option is B) – 3x2 + 4x + 8 |
|
582. |
What must be added each of the following expression to make it a whole square?(i) 4x2 - 12x + 7(ii) 4x2 - 20x + 20 |
Answer» (i) 4x2 - 12x + 7 (2x)2 – 2 (2x) (3) + 32 – 32 + 7 = (2x – 3)2 – 9 + 7 = (2x – 3)2 – 2 Hence, 2 must be added to the expression in order to make a whole square (ii) 4x2 - 20x + 20 (2x)2 – 2 (2x) (5) + 52 – 52 + 20 = (2x – 5)2 – 25 + 20 = (2x – 5)2 – 5 Hence, 5 must be added to the expression in order to make it a whole square |
|
583. |
The side length of the top of square table is x. The expression for perimeter is:(a) 4 + x (b) 2x (c) 4x (d) 8x |
Answer» (c) 4x We know that, perimeter of the square = 4 × side From the question it is given that, side length of the top of square table is x. Then, perimeter = 4 × x = 4x |
|
584. |
Select a suitable identity and find the following products(i) (6x + 5)(6x + 6)(ii) (2b – a)(2b +c) |
Answer» i) (6x + 5) (6x + 6) is in the form of (ax + b) (ax + c). (ax + b) (ax + c) = a2x2 + ax(b + c) + bc (6x + 5) (6x + 6) = (6)2x2 + 6x (5 + 6) + 5 × 6 = 36x2 + 6x × 11 + 30 = 36x2 + 66x + 30 ii) (2b – a) (2b + c) is in the form of (ax – b) (ax + c). (ax – b) (ax + c) = a2x2 + ax(c – b) – cb (2b – a) (2b + c) = (2)2(b)2 + 2b (c – a) – ca = 4b2 + 2bc – 2ab – ca |
|
585. |
Express each of the following products as a monomials and verify the result for x=1, y= 2:\((\frac{1}{8}x^2y^4)\times (\frac{1}{4}x^4y^2)\times (xy)\times 5\) |
Answer» \(\frac{1}{8}\) × \(\frac{1}{4}\) × 5 × x2 × x4 × x × y4 × y2 × y = \(\frac{5}{32}\) × x6 × y6 = \(\frac{5}{32}\)x6y6 Verification: When x = 1 and y = 2 R.H.S = \(\frac{5}{32}\) × 16 × 26 = \(\frac{5}{32}\) × 64 = 5 × 2 = 10 L.H.S = \(\frac{1}{8}\) × 12 × 24 × \(\frac{1}{4}\) × 14 × 22 × 1 × 2 × 5 = 10 Therefore, L.H.S = R.H.S |
|
586. |
Express each of the following products as a monomials and verify the result in each case for x=1:Evaluate (-8x2y6) x (-20xy) for x = 2.5 and y=1. |
Answer» -8 × -20 × x2 × x × y6 × y = 160x3y7 Verify: When, x = 2.5 and y = 1 R.H.S = 160x3y7 = 160 × (2.5)3 × (1)7 = 2500 L.H.S = - 8 × 2.52 × 1 × -20 × 1 × 2.5 = 2500 Therefore, L.H.S = R.H.S |
|
587. |
Express each of the following products as a monomials and verify the result for x=1, y= 2:(-xy3) x (yx3) x (xy) |
Answer» -x × x3 × x × y3 × y × y = -x5y5 Verify: When x = 1 and y = 2 R.H.S = -x5y5 = (-1)5 × 25 = -1 × 32 = -32 L.H.S = (-1) × 23 × 2 × 13 × 1 × 2 = -32 Therefore, L.H.S = R.H.S |
|
588. |
Find each of the following products:\((\frac{7}{9}ab^{2})\times (\frac{15}{7}ac^{2}b)\times (-\frac{3}{5}a^{2}c)\) |
Answer» \(\frac{7}{9}\times \frac{15}{7}\times \frac{-3}{5}\) x a x a x a2 x b2 x b x c2 x c = -a4 x b3 x c3 = -a4b3c3 |
|
589. |
What should be added to 1 + 2x – 3x2 to get x2 – x – 1? |
Answer» Let the added algebraic expression may be ‘A say (1 + 2x – 3x2) + A = x2 – x – 1 =A =(x2 – x – 1) – (1 + 2x – 3x2) = x2 – x – 1 – 1 – 2x + 3x2 = (x2 + 3x2) + ( – x – 2x) +( – 1 – 1) ∴ A = 4x2 – 3x – 2 ∴ The required added expression (A) = 4x2 – 3x – 2 |
|
590. |
Find the square root of : 4a2 + 9b2 + c2 - 12ab + 6bc - 4ac(a) (2a + 3b - c)(b) (2a - 3b + c)(c) (-2a + 3b + c)(d) (-2a + 3b + c) |
Answer» (c) (-2a + 3b + c) 4a2 + 9b2 + c2 - 12ab + 6bc - 4ac = (-2a)2 + (3b)2 + c2 + 2 x (-2a) x 3b + 2 x 3b x c + 2 x (-2a) x c = (-2a + 3b + c)2 ∴ Reqd. sq. root = –2a + 3b + c |
|
591. |
Factors of (2x – 3y)3 + (3y – 5z)3 + (5z – 2x)3 are :(a) 3(2x - 3y)(3y - 5z)(5z - 2x)(b) 3(3x - 2y)(3y - 5z)(5z - 2x)(c) 3(2x - 3y)(5y - 3z)(5z - 2x)(d) 3(2x - 3y)(3y - 5z)(2z - 5x) |
Answer» (a) 3(2x - 3y)(3y - 5z)(5z - 2x) Since (2x - 3y) + (3y - 5z) + (5z - 2x) = 0 (2x - 3y)3 + (3y - 5z)3 + (5z - 2x)3 = 3(2x - 3y)(3y - 5z)(5z - 2x) |
|
592. |
Add the following like terms. (i) 12ab, 9ab, ab(ii) 10x2, – 3x2, 5x2(iii) – y2, 5y2, 8y2, – 14y2(iv) 10mn, 6mn, – 2mn, – 7mn |
Answer» (i) Sum of 12ab, 9ab, ab = 12ab + 9ab + ab = (12 + 9 + 1) ab = 22 ab. (ii) Sum of 10x2, – 3x2, 5x2 = 10x2 + (- 3x2 ) + 5x2 = 10x2 – 3x2 + 5x2 = (10 – 3 + 5) x2 = 12x2 (iii) Sum of – y2, 5y2, 8y2, – 14y2 = – y2 + 5y2 + 8y2 + (- 14y2) = – 1y2 + 5y2 + 8y2 – 14y2 = (- 1 + 5 + 8 – 14) y2 = – 2y2 (iv) Sum of 10mn, 6mn, – 2mn, – 7mn = 10mn + 6mn + (- 2mn) + (- 7mn) = 10mn + 6mn – 2mn – 7mn = (10 + 6 – 2 – 7) mn = 7mn |
|
593. |
The sum of three expressions is 8 + 13a + 7a2. Two of them are 2a2 + 3a + 2 and 3a2 – 4a + 1. Find the third expression. |
Answer» Given that f he sum of 3 expressions is 8 + 13a + 7a2 ……………..(1) Two of them are 2a2 + 3a + 2 and 3a2 – 4a + 1. ∴ The sum of above two expressions (2a2 + 3a + 2) + (3a2 – 4a + 1) = 2a2 + 3a + 2 + 3a2 – 4a + 1. = (2a2 + 3a2) + (3a – 4a) + (2 + 1) = 5a2 – a + 3 ∴ The required 3rd expression (1) – (2) (1) – (2) =(7a2 + 13a + 8) – (5a2 – a + 3) = 7a2 + 13a + 8 – – 5a2 – a – 3 =(7a2 – 5a2) +(13a + a)+ (8 – 3) = 2a2 + 14a + 5 |
|
594. |
Find the value of the expression 2x2 – 4x + 5 when x = 1 |
Answer» Given expression is 2x2 – 4x + 5 When x = 1, then = 2(1)2 – 4(1) + 5 = 2 × 1 – 4 + 5 = 2 – 4 + 5 = 3 When x = 1, then 2x2 – 4x + 5 = 3 |
|
595. |
Show that(i) (3x + 7)2 − 84x = (3x − 7)2 (ii) (9p − 5q)2 + 180pq = (9p + 5q)2 |
Answer» (i) L.H.S = (3x + 7)2 − 84x = (3x)2 + 2(3x)(7) + (7)2 − 84x = 9x2 + 42x + 49 − 84x = 9x2 − 42x + 49 R.H.S = (3x − 7)2 = (3x)2 − 2(3x)(7) +(7)2 = 9x2 − 42x + 49 L.H.S = R.H.S (ii) L.H.S = (9p − 5q)2 + 180pq = (9p)2 − 2(9p)(5q) + (5q)2 − 180pq = 81p2 − 90pq + 25q2 + 180pq = 81p2 + 90pq + 25q2 = (9p)2 + 2(9p)(5q) + (5q)2 = 81p2 + 90pq + 25q2 L.H.S = R.H.S |
|
596. |
Find the products:2a2b × (-5)ab2c × (-6)bc2 |
Answer» 2a2b × (-5)ab2c × (-6)bc2 The coefficient of the product of two monomials is equal to the product of their coefficients. The variable part in the product of two monomials is equal to the product of the variables in the given monomials. Then, = [(2) × (-5) × (-6)] × (a2 × a) × (b × b2 × b) × (c × c2) = [60] × (a2+1) × (b1+2+1) × (c1+2) … [∵ am × an = am+n] = [60] × (a3) × (b4) × (c3) = [60]a3b4c3 |
|
597. |
Express each of the following products as a monomials and verify the result for x=1, y= 2:\((-\frac{4}{7}a^2b)\times (-\frac{2}{3}b^2c)\times (-\frac{7}{6}c^2a)\) |
Answer» \(\frac{-4}{7}\) × \(\frac{-2}{3}\) × \(\frac{-7}{6}\)× a2 × a × b × b2 × c × c2 = \(\frac{-4}{9}\)× a3 × b3 × c3 = \(\frac{-4}{9}\)a3b3c3 |
|
598. |
Factorise : 27a3 – b3 – 1 – 9ab(a) (3a + b - 1)(9a2 + b2 + 1 - 3ab + 3a - b)(b) (3a - b - 1)(9a2 - b2 + 1 + 3ab + 3a - b)(c) (3a + b + 1)(9a2 + b2 + 1 + 3ab + 3a - b)(d) (3a - b - 1)(9a2 + b2 + 1 + 3ab + 3a - b) |
Answer» (d) (3a - b - 1)(9a2 + b2 + 1 + 3ab + 3a - b) 27a3 - b3 - 1 - 9ab = (3a)3 + (-b)3 + (-1)3 - 3 x 3a x (-b) x (-1) = [3a + (-b) + (-1)][(-3a)2 + (-b)2 + (-1)2 - 3a x (-b) - (-b) x (-1) - 3a x (-1)] = (3a - b - 1)(9a2 + b2 + 1 + 3ab + b - 3a) [∴ a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)] |
|
599. |
Find the following products:2a3(3a+5b) |
Answer» 2a3 (3a + 5b) = 2a3 × 3a + 2a2 × 5b = 6 × a4 + 10a3b |
|
600. |
Find each of the following products:\((\frac{-24}{25}x^{3}z)\times (-\frac{15}{16}xz^{2}y)\) |
Answer» \(\frac{-24}{25}\times \frac{-15}{16}\times x^{3}\times x\times z\times z^{2}\times y\) = \(\frac{18}{20}\times x^{4}\times z^{3}\times y\) = \(\frac{9}{10}x^4z^3y\) |
|