

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
451. |
If x = 1; y = 2 find the values of the following expressions(i) 4x – 3y + 5(ii) x2 + y2(iii) xy + 3y – 9 |
Answer» i) 4x – 3y+5 If x = 1, y = 2 then the value of 4x – 3y + 5 = 4(1) – 3(2) + 5 = 4 – 6 + 5 = 9 – 6 = 3 ii) x2 + y2 If x = 1, y = 2, the value of x2 + y2= (1)2 + (2)2 iii) xy + 3y – 9 If x = 1; y = 2,the value of xy + 3y – 9 = 1 × 2 + 3(2) – 9 = 2 + 6 – 9 = 8 – 9 |
|
452. |
Find the product:(3m – 4n) (2m – 3n) |
Answer» (3m – 4n) (2m – 3n) Suppose (a – b) and (c – d) are two binomials. By using the distributive law of multiplication over addition twice, we may find their product as given below. (a – b) × (c – d) = a × (c – d) – b × (c – d) = (a × c – a × d) – (b × c – b × d) = ac – ad – bc + bd Let, a= 3m, b= 4n, c= 2m, d= 3n Now, = 3m × (2m – 3n) -4n × (2m – 3n) = [(3m × 2m) + (3m × -3n)] – [(4n × 2m) + (4n × -3n)] = [6m2 – 9mn – 8mn + 12n2] = [6m2 – 17mn + 12n2] |
|
453. |
Find the products:(x2– a2) × (x - a) |
Answer» Given (x2– a2) × (x-a) To find the product of given expression we have to use horizontal method. In that we have to multiply each term of one expression with each term of another Expression so by multiplying we get, (x2– a2) × (x-a) ⇒ x2(x-a) – a2(x-a) ⇒ x3-ax2-a2x+a3 |
|
454. |
If x - y = 7 and xy = 9, find the value of x2+y2 |
Answer» Given that, x – y = 7 Squaring both sides, we get (x – y)2 = (7)2 x2 + y2 – 2xy = 49 Its given that xy = 9, x2 + y2 – 2 (9) = 49 x2 + y2 = 49 + 18 x2 + y2 = 67 |
|
455. |
Simplify and find the value of the expression 5x2 – 4 – 3x2 + 6x + 8 + 5x – 13 when x = – 2. |
Answer» Given expression is 5x2 – 4 – 3x2 + 6x + 8 + 5x – 13 = (5x2 – 3x2 ) + (6x + 5x) + (-4 + 8 – 13) = (5 – 3)x2 + (6 + 5)x + (- 9) = 2x2 + 11x – 9 If x = – 2, then 2x2 + 11x – 9 = 2(- 2)2 + 11 (- 2) – 9 = 2(4) – 22 – 9 = 8 – 22 – 9 ∴ If x = – 2, then 2x2 + 11x – 9 = – 23 |
|
456. |
Simplification of 2x2 + 5x – 1 + 8x + x2 + 7 – 6x + 3 – 3x2 is ………………A) 7x – 9B) – 7x + 9C) 7x + 9D) 6x + 9 |
Answer» Correct option is C) 7x + 9 2x2 + 5x - 1 + 8x + x2 + 7 - 6x + 3 - 3x2 = 2x2 + x2 - 3x2 + 5x + 8x - 6x - 1 + 7 + 3 = (2 + 1 - 3)x2 + (5 + 8 - 6)x + 10 - 1 = 02 + 7x + 9 = 7x + 9 |
|
457. |
If \(x-\frac{1}{x}\) =3, find the values of \(x^2+\frac{1}{x^2}\) and \(x^4+\frac{1}{x^4}\). |
Answer» (i) Given that, x - \(\frac{1}{x}\) = 3 Squaring both sides, we get (x - \(\frac{1}{x}\))2 = (3)2 x2 - 2 × x × \(\frac{1}{x}\) + (\(\frac{1}{x}\))2 = 9 x2 - 2 + \(\frac{1}{x\times x}\) = 9 x2 + \(\frac{1}{x\times x}\) = 11 (ii) Squaring both sides, we get (x2 + \(\frac{1}{x\times x}\))2 = (11)2 (x2)2 + 2 × x2 × \(\frac{1}{x\times x}\) + (\(\frac{1}{x\times x}\))2 = 121 x4 + 2 + \(\frac{1}{x\times x\times x\times x}\) = 121 x4 + \(\frac{1}{x\times x\times x\times x}\) = 119 |
|
458. |
Find the products: (2x+5) (2x-5) |
Answer» Given (2x+5) (2x-5) By using the formula (a + b) (a – b) = a2 – b2 Applying the formula we get (2x+5) (2x-5) = (2x)2-52 (2x+5) (2x-5)= 4x2-25 |
|
459. |
If 3x+5y = 11 and xy = 2, find the value of 9x2+25y2 |
Answer» Given that, 3x + 5y = 11 Squaring both sides, we get (3x + 5y)2 = (11)2 (3x)2 + (5y)2 + 2 (3x) (5y) = 121 9x2 + 25y2 + 30xy = 121 9x2 + 25y2 + 30 (2) = 121 9x2 + 25y2 = 121 – 60 9x2 + 25y2 = 61 |
|
460. |
Find the products:(3m – 4n) × (2m – 3n) |
Answer» Given (3m – 4n) × (2m – 3n) To find the product of given expression we have to use horizontal method. In that we have to multiply each term of one expression with each term of another Expression so by multiplying we get, (3m – 4n) × (2m – 3n) ⇒3m (2m – 3n) – 4n (2m – 3n) ⇒6m2 – 9mn – 8mn + 12n2 ⇒ 6m2 – 17mn + 12 n2 |
|
461. |
Find the product:(9x + 5y) (4x + 3y) |
Answer» (9x + 5y) (4x + 3y) Suppose (a + b) and (c + d) are two binomials. By using the distributive law of multiplication over addition twice, we may find their product as given below. (a + b) × (c + d) = a × (c + d) + b × (c + d) = (a × c + a × d) + (b × c + b × d) = ac + ad + bc + bd Let, a= 9x, b= 5y, c= 4x, d= 3y Now, = 9x × (4x + 3y) +5y × (4x + 3y) = [(9x × 4x) + (9x × 3y)] + [(5y × 4x) + (5y × 3y)] = [36x2 + 27xy + 20yx + 15y2] = [36x2 + 47xy + 15y2] |
|
462. |
Simplify: 2x2 + 5x – 1 + 8x + x2 + 7 – 6x + 3 – 3x2 |
Answer» Given algebraic expression is 2x2 + 5x – 1 + 8x + x2 + 7 – 6x + 3 – 3x2 = (2x2 + x2 – 3x2) + (5x + 8x – 6x) . ( – 1 + 7 + 3) = 0 + 7x + 9 = 7x + 9 |
|
463. |
If \(x+\frac{1}{x}\) =20, find the value of \(x^2+\frac{1}{x^4}\). |
Answer» Given that, \(x+\frac{1}{x}\) = 20 Squaring both sides, we get \((x+\frac{1}{x})^2\)= (20)2 x2 + 2 × x × \(\frac{1}{x}+(\frac{1}{x})^2\) = 400 x2 + 2 + \(\frac{1}{x\times x}\) = 400 x2 + \(\frac{1}{x\times x}\) = 398 |
|
464. |
Find the value of the following expressions at a = 1 and b = –2:(i) a2 + b2 + 3ab (ii) a3 + a2b + ab2 + b3 |
Answer» (i) Value of a2 + b2 + 3ab at a = 1 and b = – 2 = (1)2 + (–2)2 + 3 (1)(–2) = 1 + 4 – 6 = 5 – 6 = – 1 (ii) Value of a3 + a2b + ab2 + b3 at a = 1 and b = – 2 = (1)3 + (1)2(–2)+(1) (–2)2 + (–2)3 = 1 – 2 + 4 – 8 = 5 – 10 = – 5 |
|
465. |
Find the products: (8+x) (8-x) |
Answer» Given (8+x) (8-x) By using the formula (a + b) (a – b) = a2 – b2 Applying the formula we get (8+x) (8-x) = (8)2-x2 (8+x) (8-x)= 64 – x2 |
|
466. |
Find the products:(9x + 5y) × (4x + 3y) |
Answer» Given (9x + 5y) × (4x + 3y) To find the product of given expression we have to use horizontal method. In that we have to multiply each term of one expression with each term of another Expression so by multiplying we get, (9x + 5y) × (4x + 3y) ⇒9x (4x + 3y) + 5y (4x + 3y) ⇒36x2 + 27xy + 20yx + 15y2 ⇒ 36x2 + 47x + 15 y2 |
|
467. |
Simplify:(x3 - 2x2 + 3x - 4)(x - 1) - (2x - 3)(x2 - x + 1) |
Answer» x4 – 2x3 + 3x2 – 4x – x3 + 2x2 – 3x + 4 – (2x3 – 2x2 + 2x – 3x2 + 3x – 3) = x4 – 3x3 + 5x2 – 7x + 4 – 2x3 + 5x2 – 5x + 3 = x4 – 5x3 + 10x2 – 12x + 7 |
|
468. |
Find the value of x, if:(i) 4x = (52)2 - (48)2(ii) 14x = (47)2 - (33)2(iii) 5x = (50)2 - (40)2 |
Answer» (i) 4x = 522 - 482 4x = (52 – 48) (52 + 48) 4x = 4 × 100 4x = 400 x = 100 (ii) 14x = (47)2 - (33)2 14x = (47 – 33) (47 + 33) 14x = 14 × 80 x = 80 (iii) 5x = (50)2 - (40)2 Using formula: a2 – b2 = (a – b) (a + b), we get 5x = (50 – 40) (50 + 40) 5x = 10 × 90 5x = 900 x = 180 |
|
469. |
Find the following products:-11y2(3y+7) |
Answer» -11y2 (3y + 7) = -11y2 × 3y – 11y2 × 7 = -11 × 3 × y2 × y – 11y2 × 7 = -33y3 – 77y2 |
|
470. |
Find the products: (7x+11y) (7x-11y) |
Answer» Given (7x+11y) (7x-11y) By using the formula (a + b) (a – b) = a2 – b2 Applying the formula we get (7x+11y) (7x-11y) = (7x)2-112 (7x+11y) (7x-11y)= 49x2-121 |
|
471. |
Find the products: ((4x/5)-(5y/3)) ((4x/5) + (5y/3)) |
Answer» Given ((4x/5)-(5y/3)) ((4x/5) + (5y/3)) By using the formula (a + b) (a – b) = a2 – b2 Applying the formula we get ((4x/5)-(5y/3)) ((4x/5) + (5y/3))= (4x/5)2-((5y/3)2 ((4x/5)-(5y/3)) ((4x/5) + (5y/3))= (16x2/25)-(25y2/25) |
|
472. |
Write the following squares of binomials as trinomials:(i) \((x+2)^2\)(ii) \((8x+3b)^2\)(iii) \((2m+1)^2\)(iv) \((9a+\frac{1}{6})^2\)(v) \((x+\frac{x^2}{2})^2\)(vi) \((\frac{x}{4}-\frac{y}{3})\)(vii) \((3x-\frac{1}{3x})^2\)(viii) \((\frac{x}{y}-\frac{y}{x})^2\)(ix) \((\frac{3a}{2}-\frac{5b}{4})^2\)(x) \((a^2b-bc^2)^2\)(xi) \((\frac{2a}{3b}+\frac{2b}{3a})^2\)(xii) \((x^2-ay)^2\) |
Answer» (i) \((x+2)^2\) x2 + 2 (x) (2) + 22 = x2 + 4x + 4 (ii) \((8x+3b)^2\) (8x)2 + 2 (8x) (3b) + (3b)2 = 16x2 + 48xb + 9b2 (iii) \((2m+1)^2\) (2m)2 + 2 (2m) (1) + 12 = 4m2 + 4m + 1 (iv) \((9a+\frac{1}{6})^2\) (9a)2 + 2 (9a) (\(\frac{1}{6}\)) + (\(\frac{1}{6}\))2 = 81a2 + 3a + \(\frac{1}{36}\) (v) \((x+\frac{x^2}{2})^2\) (x)2 + 2 (x) (\(\frac{x\times x}{2}\)) + (\(\frac{x\times x}{2}\))2 = x2 + x3 + \(\frac{1}{4}\)x4 (vi) \((\frac{x}{4}-\frac{y}{3})\) (\(\frac{x}{4}\))2 – 2 (\(\frac{x}{4}\)) (\(\frac{y}{3}\)) + (\(\frac{y}{3}\))2 = \(\frac{1}{16}\)x2 - \(\frac{xy}{6}\) + \(\frac{1}{9}\)y2 (vii) \((3x-\frac{1}{3x})^2\) (3x)2 – 2 (3x) (\(\frac{1}{3x}\)) + (\(\frac{1}{3x}\))2 = 9x2 – 2 + \(\frac{1}{9\times x\times x}\) (viii) \((\frac{x}{y}-\frac{y}{x})^2\) (\(\frac{x}{y}\))2 – 2 (\(\frac{x}{y}\)) (\(\frac{y}{x}\)) + (\(\frac{y}{x}\))2 = \(\frac{x\times x}{y\times y}\) - 2 + \(\frac{y\times y}{x\times x}\) (ix) \((\frac{3a}{2}-\frac{5b}{4})^2\) (\(\frac{3a}{2}\))2 – 2 (\(\frac{3a}{2}\)) (\(\frac{5b}{4}\)) + (\(\frac{5b}{4}\))2 = \(\frac{9}{4}\)a2 - \(\frac{15}{4}\)ab + \(\frac{25}{16}\)b (x) \((a^2b-bc^2)^2\) (a2b)2 – 2 (a2b) (bc2) + (bc2)2 = a4b2 – 2a2b2c2 + b2c4 (xi) \((\frac{2a}{3b}+\frac{2b}{3a})^2\) (\(\frac{2a}{3b}\))2 + 2 (\(\frac{2a}{3b}\)) (\(\frac{2b}{3a}\)) + (\(\frac{2b}{3a}\))2 = \(\frac{4\times a\times a}{9\times b\times b}\) + \(\frac{8}{9}\)a + \(\frac{4\times b\times b}{9\times a\times a}\) (xii) \((x^2-ay)^2\) (x2)2 – 2 (x2) (ay) + (ay)2 = x4 – 2x2ay + a2y2 |
|
473. |
How many number of terms will be there in the product of two binomials? |
Answer» No. of terms in the product of two binomials are 4. Ex: (a + b) (c + d) = ac + ad + be + bd |
|
474. |
Simplify the following using the identities:(i) \(\frac{58^2-42^2}{16}\)(ii) 178 x 178 - 22 x 22(iii) \(\frac{198\times 198-102\times 102}{96}\)(iv) 1.73 x 1.73 - 0.27 x 0.27(v) \(\frac{8.63\times 8.63-1.37\times 1.37}{0.726}\) |
Answer» (i) \(\frac{58^2-42^2}{16}\) = \(\frac{(58-42)(58-42)}{4\times 4}\) = \(\frac{16(100)}{16}\) = 100 (ii) 178 x 178 - 22 x 22 (178)2 – (22)2 = (178 + 22) (178 – 22) = 200 × 156 = 31200 (iii) \(\frac{198\times 198-102\times 102}{96}\) = \(\frac{(198-102)(198+102)}{96}\) = \(\frac{96\times 300}{96}\) = 300 (iv) 1.73 x 1.73 - 0.27 x 0.27 (1.73) – (0.27) = (1.73 + 0.27) (1.73 – 0.27) = 2 (1.46) = 2.92 (v) \(\frac{8.63\times 8.63-1.37\times 1.37}{0.726}\) = \(\frac{(8.63+1.37)(8.63-1.37)}{0.726}\) = \(\frac{10\times 7.26}{0.726}\) = 100 |
|
475. |
Find each of the following products:(i) (x + 3)(x – 3) (ii) (2x + 5)(2x – 5) (iii) (8 + x)(8 – x) (iv) (7x + 11y)(7x – 11y) |
Answer» (i) Given, (x + 3)(x – 3) By using the formula (a + b) (a – b) = a2 – b2 We get; = x(x + 3) – 3(x + 3) = x2 + 3x – 3x – 9 = x2 – 9 (ii) Given, (2x + 5)(2x – 5) By using the formula (a + b) (a – b) = a2 – b2 We get; = 2x(2x + 5) – 5(2x + 5) = 4x2 + 10x – 10x – 25 = 4x2 – 25 (iii) Given, (8 + x)(8 – x) By using the formula (a + b) (a – b) = a2 – b2 We get; = 8(8 + x) – x(8 + x) = 64 + 8x – 8x – x2 = 64 – x2 (iv) Given, (7x + 11y)(7x – 11y) By using the formula (a + b) (a – b) = a2 – b2 We get; = 7x(7x + 11y) – 11y(7x + 11y) = 49x2 + 77xy – 77xy – 121y2 = 49x2 – 121y2 |
|
476. |
Find the products: ((x + (1/x)) ((x-(1/x)) |
Answer» Given ((x + (1/x)) ((x-(1/x)) By using the formula (a + b) (a – b) = a2 – b2 Applying the formula we get ((x + (1/x)) ((x-(1/x)) = (x)2-(1/x)2 ((x + (1/x)) ((x-(1/x)) = (x2)-(1/x2) |
|
477. |
Simplify the following using the formula: (a-b)(a+b)=a2 - b2:(i) (82)2-(18)2(ii) (467)2-(33)2(iii) (79)2-(69)2(iv) 197 x 203(v) 113 x 87(vi) 95 x 105(vii) 1.8 x 2.2(viii) 9.8 x 10.2 |
Answer» (i) (82)2- (18)2 Using formula: (a – b) (a + b) = a2 – b2, we get = (82 – 18) (82 + 18) = 64 × 100 = 6400 (ii) (467)2- (33)2 Using formula: (a – b) (a + b) = a2 – b2, we get = (467 – 33) (467 + 33) = (434) (500) = 217000 (iii) (79)2- (69)2 Using formula: (a – b) (a + b) = a2 – b2, we get = (79 + 69) (79 – 69) = (148) (10) = 1480 (iv) 197 x 203 Using formula: (a – b) (a + b) = a2 – b2, we get = (200 – 3) (200 + 3) = (200)2 – (3)2 = 40000 – 9 = 39991 (v) 113 x 87 Using formula: (a – b) (a + b) = a2 – b2, we get = (100 + 3) (100 – 3) = (100)2 – (3)2 = 10000 – 9 = 9991 (vi) 95 x 105 Using formula: (a – b) (a + b) = a2 – b2, we get = (100 – 5) (100 + 5) = (100)2 – (5)2 = 10000 – 25 = 9975 (vii) 1.8 x 2.2 Using formula: (a – b) (a + b) = a2 – b2, we get = (2- 0.2) (2 + 0.2) = (2)2 – (0.2)2 = 4 – 0.04 = 3.96 (viii) 9.8 x 10.2 Using formula: (a – b) (a + b) = a2 – b2, we get = (10 – 0.2) (10 + 0.2) = (10)2 - (0.2)2 = 100 – 0.04 = 90.96 |
|
478. |
Find the products: ((1/x) + (1/y)) ((1/x)-(1/y)) |
Answer» Given ((1/x) + (1/y)) ((1/x)-(1/y)) By using the formula (a + b) (a – b) = a2 – b2 Applying the formula we get ((1/x) + (1/y)) ((1/x)-(1/y))= (1/x)2-(1/y)2 ((1/x) + (1/y)) ((1/x)-(1/y))= (1/x2)-(1/y2) |
|
479. |
Using the formula for squaring a binomial, evaluate the (78)2. |
Answer» Given (78)2 But we can write 78 as 80-2 And also we know that (a – b)2 = a2-2ab+b2 By applying the above identity we get (78)2 = (80-2)2= 802-2(80) (2) +22 (80-2)2=6400-320+4=6084 |
|
480. |
Using the formula for squaring a binomial, evaluate the (197)2. |
Answer» Given (197)2 But we can write 197 as 200-3 And also we know that (a – b)2 = a2-2ab+b2 By applying the above identity we get (197)2 = (200-3)2= 2002-2(200) (3) +32 (200-3)2=40000-1200+9=38809 |
|
481. |
Using the formula for squaring a binomial, evaluate the following:(i) (102)2(ii) (99)2(iii) (1001)2(iv) (999)2(v) (703)2 |
Answer» (i) (102)2 This can be written as: (100 + 2)2 = (100)2 + 2 (100) (2) + 22 = 10000 + 400 + 4 = 10404 (ii) (99)2 This can be written as: (100 – 1)2 = (100)2 – 2 (100) (1) + 12 = 10000 – 200 + 1 = 9801 (iii) (1001)2 This can be written as: (1000 + 1)2 = (1000)2 + 2 (1000) (1) + 12 = 1000000 + 2000 + 1 = 1002001 (iv) (999)2 This can be written as: (1000 – 1)2 = (1000)2 – 2 (1000) (1) + 12 = 1000000 – 2000 + 1 = 998001 (v) (703)2 This can be written as: (700 + 3)2 = (700)2 + 2 (700) (3) + 32 = 490000 + 4200 + 9 = 494209 |
|
482. |
Find the products: (2a + (3/b)) (2a – (3/b)) |
Answer» Given (2a + (3/b)) (2a – (3/b)) By using the formula (a + b) (a – b) = a2 – b2 Applying the formula we get (2a + (3/b)) (2a – (3/b))= (2a)2-(3/b)2 (2a + (3/b)) (2a – (3/b))= 4a2-(3/b2) |
|
483. |
Using the formula for squaring a binomial, evaluate the (103)2. |
Answer» Given (103)2 But we can write 103 as 100+3 And also we know that (a + b)2 = a2+2ab+b2 By applying the above identity we get (103)2 = (100+3)2= 1002+2(100) (3) +32 (100+3)2=10000+600+9=10609 |
|
484. |
Using the formula for squaring a binomial, evaluate the following: (i) (69)2 (ii) (78)2 (iii) (197)2 (iv) (999)2 |
Answer» (i) Given, (69)2 We can also write it as; (70 – 1)2 Now, By using the formula (a - b)2 = a2 - 2ab + b2 We get, = (70 – 1)2 = (70)2 – 2 × 70 × 1 + (1)2 = 4900 – 140 + 1 = 4761 (ii) Given = (78)2 We can also write it as; (80 – 2)2 Now, By using the formula (a - b)2 = a2 - 2ab + b2 We get, (80 – 2)2 = (80)2 – 2 × 80 × 2 + (2)2 = 6400 – 320 + 4 = 6084 (iii) (197)2 We can also write it as; (200 – 3)2 Now, By using the formula (a - b)2 = a2 - 2ab + b2 We get, (200 – 3)2 = (200)2 – 2 × 200 × 3 + (3)2 = 40000 – 1200 + 9 = 38809 (iv) (999)2 We can also write it as; (1000 – 1)2 Now, By using the formula (a - b)2 = a2 - 2ab + b2 We get, (1000 - 1)2 = (1000)2 – 2 × 1000 × 1 + (1)2 = 1000000 – 2000 + 1 = 998001 |
|
485. |
Using the formula for squaring a binomial, evaluate the (704)2. |
Answer» Given (704)2 But we can write 704 as 700+4 And also we know that (a + b)2 = a2+2ab+b2 By applying the above identity we get (704)2 = (700+4)2= 7002+2(700) (4) +42 (700+4)2=490000+2800+16=495616 |
|
486. |
Using the formula for squaring a binomial, evaluate the (54)2. |
Answer» Given (54)2 But we can write 54 as 50+4 And also we know that (a + b)2 = a2+2ab+b2 By applying the above identity we get (54)2 = (50+4)2= 502+2(50) (4) +42 (50+4)2=2500+400+16=2916 |
|
487. |
Using the formula for squaring a binomial, evaluate the following: (i) (54)2 (ii) (82)2 (iii) (103)2 (iv) (704)2 |
Answer» (i) Given, (54)2 If we break the given number we get; (50 + 4)2 Now we can use the (a + b)2 = a2 + b2 + 2ab So, = (50 + 4)2 = (50)2 + (4)2 + 2 × 50 × 4 = 2500 + 16 + 400 = 2916 (ii) (82)2 We can also write it as; (80 + 2)2 By using the formula (a + b)2 = a2 + b2 + 2ab We get, = (80 + 2)2 = (80)2 + (2)2 + 2 × 80 × 2 = 6400 + 4 + 320 = 6724 (iii) (103)2 We can also write it as; (100 + 3)2 By using the formula (a + b)2 = a2 + b2 + 2ab We get, (100 + 3)2 = (100)2 + (3)2 + 2 × 100 × 3 = 10000 + 9 + 600 = 10609 (iv) (704)2 We can also write it as; (700 + 4)2 By using the formula (a + b)2 = a2 + b2 + 2ab We get, = (700 + 4)2 = (700)2 + (4)2 + 2 × 700 × 4 = 490000 + 16 + 5600 = 495616 |
|
488. |
Solve the question(i) 103 × 104 (ii) 5.1 × 5.2 (iii) 103 × 98 (iv) 9.7 × 9.8 |
Answer» (i) 103 × 104 = (100 + 3) (100 + 4) = (100)2 + (3 + 4) (100) + (3) (4) = 10000 + 700 + 12 = 10712 (ii) 5.1 × 5.2 = (5 + 0.1) (5 + 0.2) = (5)2 + (0.1 + 0.2) (5) + (0.1) (0.2) = 25 + 1.5 + 0.02 = 26.52 (iii) 103 × 98 = (100 + 3) (100 − 2) = (100)2 + [3 + (− 2)] (100) + (3) (− 2) = 10000 + 100 − 6 = 10094 (iv) 9.7 × 9.8 = (10 − 0.3) (10 − 0.2) = (10)2 + [(− 0.3) + (− 0.2)] (10) + (− 0.3) (− 0.2) = 100 + (− 0.5)10 + 0.06 = 100.06 − 5 = 95.06 |
|
489. |
Divide: 5m3-30m2+45m by 5m |
Answer» Given 5m3-30m2+45m by 5m ⇒-5m3-30m2+45m / (5m) On dividing polynomial by a monomial we have divide every variables of polynomial By monomial On simplifying we get ⇒m2-6m+9 |
|
490. |
Identify the term containing u2 in the expression u3 + 3u2v + 3uv2 + v3 and write its coefficient. |
Answer» Term containing u2 = 3u2v Coefficient of u2 = 3v |
|
491. |
Simplify the algebraic expressions by removing grouping symbols.a – [2b – {3a – (2b – 3c)}] |
Answer» Given a – [2b – {3a – (2b – 3c)}] First we have to remove the parentheses, then the braces, and then the square brackets. Then we get, = a – [2b – {3a – (2b – 3c)}] = a – [2b – {3a – 2b + 3c}] = a – [2b – 3a + 2b – 3c] = a – [4b – 3a – 3c] On simplifying we get, = a – 4b + 3a + 3c = 4a – 4b + 3c |
|
492. |
State whether the statements are true (T) or false (F)Common factor of 11pq2, 121p2q3, 1331p2q is 11p2q2. |
Answer» False Common factors of 11pq2, 121p2q3 and 1331p2q can be found out as: Common factors (11pq2, 121p2q3, 1331p2q) = Common factors (11×pq, 11×11p2q3, 11×121p2q) ⇒ Common factors (11pq2, 121p2q3, 1331p2q) = 11 [∵, 11 divides all the three term 11pq2, 121p2q3 and 1331p2q; p divides all the three terms 11pq2, 121p2q3 and 1331p2q; and q divides all the three terms 11pq2, 121p2q3 and 1331p2q] |
|
493. |
Fill in the blanks to make the statements true:The common factor method of factorisation for a polynomial is based on ………….. property. |
Answer» Distributive In this method, we regroup the terms in such a way, so that each term in the group contains a common literal or number or both. |
|
494. |
Add the expressions : 9a + 4, 2 – 3a |
Answer» Given expressions are 9a + 4; 2 – 3a Write the given expressions in standard form. 9a + 4, – 3a + 2. The sum = (9a + 4) + (- 3a + 2) = 9a + 4 – 3a + 2 = (9a – 3a) + (4 + 2) = (9 – 3)a + 6 = 6a + 6 |
|
495. |
Find the products:(7a + 9b) (7a + 9b) |
Answer» Given that (7a +9b) (7a +9b) But we can write the given expression as (7a +9b) (7a +9b) = (7a +9b)2 But we have (a + b)2=a2+2ab+b2 On applying above identity in the given expression we get, (7a +9b)2= (7a)2+2 (7a) (9b) + (9b)2 (7a +9b)2= 49a2+126 x + 81y2 |
|
496. |
State whether the statements are true (T) or false (F)h is a factor of 2π (h+r). |
Answer» False Factorizing 2π (h + r), we get 2π (h + r) = 2π × (h + r) ⇒ There are three factors of 2π (h + r) namely, 2, π and (h + r). But h is not any factor of 2π (h + r). |
|
497. |
Use a suitable identity to get each of the following products.(i) (7a − 9b) (7a − 9b)(ii) (− a + c) (− a + c) |
Answer» (i) (7a − 9b) (7a − 9b) = (7a − 9b)2 = (7a)2 − 2(7a)(9b) + (9b)2 [(a − b)2 = a2 − 2ab + b2] = 49a2 − 126ab + 81b2 (ii) (− a + c) (− a + c) = (− a + c)2 = (− a)2 + 2(− a) (c) + (c)2 [(a + b)2 = a2 + 2ab + b2] = a2 − 2ac + c2 |
|
498. |
Using suitable identities, evaluate the 72 x 68. |
Answer» 72 x 68 = (70 + 2) (70 – 2) = (70)2 – (2)2 [Using in identity (a + b) (a – b) = a2 – b2] = 4900 – 4 = 4896 |
|
499. |
Simplify(i) (a2 – b2)2(ii) (2n + 5)2 – (2n – 5)2(iii) (7m – 8n)2 + (7m + 8n)2(iv) (m2 – n2m)2 + 2m3n2 |
Answer» (i) (a2 – b2)2 = (a2)2 – 2(a2) (b2) + (b2)2 (Using identity II) = a4 – 2a2b2 + b4 (ii) (2n + 5)2 – (2n – 5)2 = {(2n)2 + 2 (2n) (5) + (5)2} – {(2n)2 – 2(2n) (5) + (5)2} = (4n2 + 20n + 25) – (4n2 – 20n + 25) = 4n2 + 20n + 25 – 4n2 + 20n – 25 = 4n2 – 4n2 + 20n + 20n + 25 – 25 = 0 + 40n + 0 = 40n Alternative Method- (2n + 5)2 – (2n – 5)2 = {(2n + 5) + (2n – 5)} {(2n + 5) – (2n – 5)} = (4n) (10) = 40n (iii) (7m – 8n)2 + (7m + 8n)2 = {(7m)2 – 2(7m) (8n) + (8n)2} + {(7m)2 + 2(7m) (8n) + (8n)2} (Using identity I and II) = (49m2 – 112mn + 64n2) + (49m2 + 112mn + 64n2) = 49m2 – 112mn + 64n2 + 49m2 + 112 mn + 64 n2 = 49m2 + 49m2 – 112mn + 112mn + 64m2 + 64n2 = 98m2 + 128n2 (iv) (m2 – n2m)2 + 2m3n2 = [(m2)2 – 2(m2) (n2m) + (n2m)2] + 2m3n2 (Using identity II) = m4 – 2m3n2 + n4m2 + 2m3n2 = m4 – 2m3n2 + 2m3n2 + n4m2 = m + n4m2 |
|
500. |
Find the product:(6y + 7) (- 6y + 7) |
Answer» (6y + 7) (- 6y + 7) = (7 + 6y)(7 – 6y) = (7)2 – (6y)2 = 49 – 36y2 |
|