

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
351. |
Find the degree of each algebraic expression.(i) 3x – 15(ii) xy + yz(iii) 2y2z + 9yz – 7z – 11x2y2(iv) 2y2z + 10yz(v) pq + p2q – p2q2(vi) ax2 + bx + c |
||||||||||||||
Answer»
|
|||||||||||||||
352. |
Give two examples for each type of algebraic expression. |
Answer» Monomial: i) 5x2y, ii) 32 xyz Binomial: i) ax + by, ii) 2z – 5 Trinomial : i) ax + by + cz, ii) p2 + q2 + r2 Polynomial: i) 5x4 – 2x2 + x – 1, ii) 6 + 5x – 4x2 + 3y3 – 2z4 |
|
353. |
Cube of (a + 1) is = ………………… A) a2 + 1 B) a + 2a + 1 C) a + 3a + 3 D) 3a – 3 |
Answer» C) a + 3a + 3 Correct option is (C) \(a^3+3a^2+3a+1\) \((a+1)^3\) \(=(a+1)^2(a+1)\) \(=(a^2+2a+1)(a+1)\) \(=a^3+2a^2+a+a^2+2a+1\) \(=a^3+3a^2+3a+1\) |
|
354. |
Find the numerical coefficient of x3y2z, xy2z3, –3xy2z3, 5x3y2z, –7x2y2z2. |
Answer» Numerical coefficient of, x3y2z = 1 xy2z3 = 1 –3xy2z3 = -3 5x3y2z = 5 –7x2y2z2 = -7 |
|
355. |
9672 = ………………… A) 93 × 004 B) 93 × 102 C) 83 × 104 D) 93 × 107 |
Answer» Correct option is A) 93 × 004 Correct option is (A) 93 x 104 9672 = 93 \(\times\) 104 |
|
356. |
a (a – b) + b (a – b) = ……………….. A) a2 – b B) a2 – b2 C) a – b2 D) a/2 – b |
Answer» Correct option is B) a2 – b2 Correct option is (B) a2 - b2 a (a – b) + b (a – b) \(=a^2-ab+ab-b^2\) = \(a^2-b^2\) |
|
357. |
The area of adjacent square is …………………A) 2a4 B) 2a2 C) (a/2)2 D) 4a2 |
Answer» Correct option is D) 4a2 Correct option is (D) 4a2 Side of given square = 2a. \(\therefore\) Area of given square \(=(2a)^2=4a^2.\) |
|
358. |
Product of two monomials is a monomial? Check. |
Answer» Yes, the product of two monomials is a monomial. ∵ 2x × y = 2xy |
|
359. |
The degree of a monomial -5/2 xy2z3 isA) 7B) 2C) 3D) 6 |
Answer» Correct option is D) 6 |
|
360. |
The degree of a monomial \(\frac{15}{19}\) l3m4 n isA) 8B) 7C) 9D) 12 |
Answer» Correct option is A) 8 |
|
361. |
Which of the following is a Monomial? A) 7 lm2 n2 B) 100 – (98 ÷ 2) C) 3y2 – x2 y2 + 4xD) 1 + x + x2 |
Answer» Correct option is A) 7 lm2 n2 |
|
362. |
Evaluate using suitable identities.2.07 × 1.93 |
Answer» 2.07 × 1.93 = (2 + 0.07) (2 – 0.07) = 22 – (0.07)2 = 3.9951 |
|
363. |
Simplify and find the value of 4x + x – 2x2 + x – 1 when x = -1. |
Answer» Given expression = 4x + x – 2x2 + x – 1 = 4x + x + x – 2x2 – 1 = – 2x2 + 6x – 1 If x = – 1 then, the value of – 2x2 + 6x – 1 = – 2 (-1)2 + 6( – 1) – 1 = – 2(1) – 6 – 1 = – 2 – 6 – 1 = – 9 |
|
364. |
Find the value of following monomials, if x =1.(i) -x(ii) 4x(iii) -2x2 |
Answer» i) If x = 1 ⇒ – x = – (1)= – 1 ii) If x = 1 ⇒ 4x = 4 x 1 = 4 iii) If x= 1 ⇒ – 2x2 = – 2(1)2 = – 2 × 1= – 2 1. -x = -1 2. 4x = 4(-1) = -4 3. -2x² = -2(-1)² =-2(1) = -2
|
|
365. |
Evaluate using suitable identities.497 × 505 |
Answer» 497 × 505 = (500 – 3) (500 + 5) = 5002 + (–3 + 5) × 500 + (–3) (5) [using (x + a) (x + b) = x2 + (a + b) x + ab] = 250000 + 1000 – 15 = 250985 |
|
366. |
Fill in the blanks to make the statement true:a2 – b2 = (a + b ) __________. |
Answer» a2 – b2 = (a + b) (a – b) … [from the standard identities] |
|
367. |
Evaluate using suitable identities.1812 – 192 |
Answer» 1812 – 192 = (181 – 19) (181 + 19) [using a2 – b2 = (a – b) (a + b)] = 162 × 200 = 32400 |
|
368. |
Fill in the blanks to make the statement true.The speed of car is 55 km/hrs. The distance covered in y hours is ________. |
Answer» The speed of car is 55 km/hrs. The distance covered in y hours is 55y. Because, distance = speed × time |
|
369. |
State whether the statements are true (T) or false (F)(a + b)2 = a2 + b2 |
Answer» False Lets recall the formula of (a + b)2. (a + b)2 = a2 + 2×a×b + b2 ⇒ (a + b)2 = a2 + 2ab + b2 But right-hand side of the equation does not match left-hand side of the equation. That is, a2 + 2ab + b2 ≠ a2 + b2 ⇒ (a + b)2 ≠ a2 + b2 |
|
370. |
Fill in the blanks to make the statement true.The expression 13 + 90 is a ________. |
Answer» The expression 13 + 90 is a constant. 13 + 90 = 103 |
|
371. |
State whether the statements are true (T) or false (F).(a – b)2 = a2 – b2 |
Answer» False Expansion of (a – b)2 is, (a – b)2 = a2 – 2 × a × b + b2 ⇒ (a – b)2 = a2 – 2ab + b2 And a2 – 2ab + b2 ≠ a2 – b2 ⇒ (a – b)2 ≠ a2 – b2 |
|
372. |
Fill in the blanks to make the statement true.Like terms in the expression n(n + 1) + 6 (n – 1) are ___________and ________. |
Answer» Like terms in the expression n(n + 1) + 6 (n – 1) are n and 6n. Consider the given expression, n(n + 1) + 6 (n – 1) = n2 + n + 6n – 6 = n2 + 7n – 6 Therefore, like terms are n and 6n |
|
373. |
Identify the expressions that are in standard form. i) 9x2 + 6x + 8ii) 9x2 + 15 + 7xiii) 9x2 + 7iv) 9x3 + 15x + 3v) 15x2 + x3 + 3xvi) x2y + xy + 3vii) x3 + x2y2 + 6xy |
Answer» (i), (iii), (iv), (vi) are in standard form. |
|
374. |
Write five different expressions in standard form. |
Answer» i) ax2 + bx + c ii) ax + b iii) 4x3 + 5x2 – 6x + 2 iv) 5x4 – 3x3 – 2x – 2 v) px3 + qx2 + r |
|
375. |
State whether the statements are true (T) or false (F)The product of one negative and one positive term is a negative term. |
Answer» True When we multiply a negative term by a positive term, the resultant will be a negative term, i-e. (-) x (+) = (-). |
|
376. |
State whether the statements are true (T) or false (F)The product of two negative terms is a negative term. |
Answer» False Since, the product of two negative terms is always a positive term, i.e. (-) x (-) = (+). |
|
377. |
State whether the statements are true (T) or false (F)(a + b) (a – b) = a2 – b2 |
Answer» True Let us expand (a + b)(a – b). Multiply each term with the other term which is in multiplication with it. (a + b)(a – b) = a2 – ab + ab – b2 ⇒ (a + b)(a – b) = a2 +(ab – ab) – b2 ⇒ (a + b)(a – b) = a2 + 0 – b2 ⇒ (a + b)(a – b) = a2 – b2 |
|
378. |
Fill in the blanks to make the statement true:(a – b)2 + ____________ = a2 – b2 |
Answer» (a – b)2 + (2ab – 2b2) = a2 – b2 = (a – b)2 + (2ab – 2b2) = a2 + b2 – 2ab + 2ab – 2b2 = a2 – b2 |
|
379. |
Write numerical and algebraic coefficients of terms : 4xy |
Answer» Given the term is 4xy Numerical coefficient: 4 Algebraic coefficient: xy |
|
380. |
Add the expression:(3/4)x2, 5 x2, -3x2, -(1/4) x2 |
Answer» (3/4)x2, 5 x2, -3x2, -(1/4) x2 In the above questions terms having the same literal factors are like terms. Now add the like terms, = (3/4)x2 + 5x2 – 3x2 – (1/4) x2 = (3/4)x2– (1/4) x2 + 5x2 – 3x2 = ((3-1)/4)x2 + 2x2 = (2/4)x2 + 2x2 = (1/2)x2 + 2x2 = ((1 + 4)/2)x2 = (5/2)x2 |
|
381. |
Add the expression:5a2b, -8a2b, 7a2b |
Answer» 5a2b, -8a2b, 7a2b In the above questions terms having the same literal factors are like terms. Now add the like terms, = 5a2b – 8a2b + 7a2b = 12 a2b – 8a2b = 4a2b |
|
382. |
Which of the following expression is in a standard form? A) ax2 + c + bx B) ax2 + bx + c C) c + bx + ax2 D) ax2 + b + ex3 |
Answer» Correct option is B) ax2 + bx + c |
|
383. |
From the sum of x2 – y2 – 1, y2 – x2 – 1 and 1 – x2 – y2, subtract -(1 + y2). |
Answer» Sum of x2 – y2 -1, y2 – x2 – 1 and 1 – x2 – y2 = x2 – y2 – 1 + y2 – x2 – 1 + 1 – x2 – y2 On combining the like terms, = x2 – x2 – x2 – y2 + y2 – y2 – 1 – 1 + 1 = -x2 – y2 – 1 Now, subtract -(1 + y2) from -x2 – y2 -1 = -x2 – y2 -1 – [-(1 + y2)] = – x2 – y2 – 1 + 1 + y2 = -x2 – y2 + y2 – 1 + 1 = -x2 |
|
384. |
If P = -(x-2), Q = -2(y+1) and R=- x+2y, find a,when P+Q+ R=ax. |
Answer» Given, P = -(x-2),Q = -2(y+ 1)and R = -x + 2y Also given, P+Q + R=ax On putting the values of P,Q and R on LHS, we get -(x-2)+[-2(y+1)]+(-x+2y) = ax => -x+2 + (-2y-2)-x + 2y = ax => -x + 2 – 2y – 2 – x+ 2y = ax On combining the like terms, -x – x – 2y + 2y + 2 – 2=ax => -2x = ax By comparing LHS and RHS, we get a = -2 |
|
385. |
(x + 1) (x – 1) (x2 + 1) = …………….. A) x4 – 1 B) x2 – 1C) 4x – 1 D) x + 1 |
Answer» Correct option is A) x4 – 1 |
|
386. |
If A = 3x2 - 4x + 1, B = 5x2+ 3x - 8 and C = 4x2 - 7x + 3, then find(A + B)-CB+C-A A-B+C |
Answer» Given, A = 3x2 – 4x +1, B = 5x2 + 3x – 8 and C = 4x2 – 7x + 3 1. (A + B)-C = (3x2 -4x +1 + 5x2 + 3x-8) -(4x2 -1x + 3) On combining the like terms, = (3x2 + 5x2 – 4x + 3x + 1 – 8) – (4x2 – 1x + 3) = (8x2-x-7)-(4x2-7x + 3) = 8x2-x-7-4x2 + 7x-3 = 8x2-4x2 -x + 7x-7-3 = 4x2 + 6x-10 2. B+C-A = 5x2 + 3x-8+4x2-7x + 3-(3x2-4x + 1)) On combining the like terms, = (5x2 + 4x2 + 3x-7x-8+ 3)-(3x2 – 4x + 1) = (9x2 -4x-5)- (3x2 – 4x +1) = 9x2 -4x-5-3x2 + 4x-1 = 9x2 – 3x2 – 4x + 4x – 5 -1 = 6x2-6 3. A+B+C = 3x2-4x+ 1 +5x2 + 3x-8+4x2-7x+3 On combining the like terms, = 3x2 + 5x2 + 4x2 -4x + 3x-7x +1 – 8 + 3 = 12x2-8x-4 |
|
387. |
Find the values of following polynomials at m = 1, n = -1 and p = 2(a) m+n+p(b) m2+n2+P2(c) m3+ n3+p3(d) mn+np + pm(e) m3 +n3 + p3 -3mnp(f) m2n2 +n2p2 +p2m2 |
Answer» Given, m = 1, n = -1 and p = 2 So, putting m = 1, n = -1 and p = 2 in the given expressions, we get (a) m+n+p = 1-1+2 = 2 =(1)2 + (-1)2 + (2)2 =1+1+ 4 = 6 =(1)3 + (-1)3 + (2)3 = 1 -1 + 8 = 8 = (1)(-1)+(-1)(2)+(2)(1) = -1-2 + 2 = -1 = (1)3 + (-1)3 + (2)3 -3(1)(-1)(2) = 1-1+8+6 = 14 = (1)2 (-1)2 + (-1)2 (2)2 + (2)2 (1)2 = 1+ 4+ 4 = 9 |
|
388. |
8x = (52)2 – (48)2 then x = ……………….. A) 12 B) 50 C) 9 D) 26 |
Answer» Correct option is B) 50 Correct option is (B) 50 \(52^2–48^2\) \(=(52-48)\times(52+48)\) \(=4\times100=400\) \(\therefore\) 8x = 400 \(\Rightarrow\) \(x=\frac{400}8=50\) |
|
389. |
(11 + x)(11 – x) = ………………. A) 121 – x2 B) 121 – x C) 12 – x3 D) 3x – 4 |
Answer» Correct option is A) 121 – x2 Correct option is (A) 121 – x2 (11 + x) (11 – x) \(=11^2-x^2=121-x^2\) |
|
390. |
Define : polynomials.. |
Answer» Algebraic expressions in which the variables involved have only non- negative integral exponents are called polynomials. For example, by2 – y + 2 is a polynomial while a1/2 + 8a3 – 3 and y–2 + y are not polynomials. |
|
391. |
How much is 21a3 -17a2 less than 89a3 - 64a2 + 6a + 16 ? |
Answer» Required expression is 89a3 -64a2+6a+16-(21a3 -17a2) = 89a3 -64a2+6a+16 -21a3 + 17a2 On combining the like terms, = 89a3 -21a3 – 64a2 +17a2 + 6a+16 = 68a3 -47a2 + 6a+16 So,21a3 -17a2 is 68a3-47a2 + 6a+16 less than 89a3 -64a2+6a+16. |
|
392. |
a2 – b2 = (a + b) (a – b) is a ………………. A) Identity B) Area C) Place D) None |
Answer» Correct option is A) Identity Correct option is (A) Identity \(a^2-b^2\) = (a + b) (a – b) is true for all a and b. \(\therefore\) It is an identity. |
|
393. |
(x + a) (x – b) = ………………….= A) x2 + ax – bx – ab B) x2 + (a + b) x – abC) x2 – ax – ab D) None |
Answer» A) x2 + ax – bx – ab Correct option is (A) x2 + ax – bx – ab (x + a) (x – b) \(=x^2+ax-bx-ab\) \(=x^2+(a–b)x–ab\) |
|
394. |
1012 – 1012 = ……………..A) 101 B) 202 C) 0 D) 401 |
Answer» Correct option is C) 0 Correct option is (C) 0 \(101^2–101^2=0\) |
|
395. |
a = 13, b = 12 then a2 – b2 = ………………. A) 16 B) 10 C) 25D) 12 |
Answer» Correct option is C) 25 Correct option is (C) 25 a = 13, b = 12 Then \(a^2-b^2\) \(=13^2-12^2\) = 169 - 144 = 25 |
|
396. |
(3q+7p2-2r3+4) – (4p2-2q+7r3-3) =?(a) (p2+2q+5r3+1) (b) (11p2+q+5r3+1) (c) (-3p2-5q+9r3-7) (d) (3p2+5q-9r3+7) |
Answer» (d) (3p2+5q-9r3+7) Explanation: Given (3q+7p2-2r3+4) – (4p2-2q+7r3-3) According to the rules of subtraction of algebraic equations, we have negative sign will Becomes positive and so we have to keep the big numerical sign. Now arrange the variables in rows we get (3q+7p2-2r3+4) – (4p2-2q+7r3-3) = (3p2+5q-9r3+7) |
|
397. |
Find the following products:\((-\frac{7}{4}ab^2c-\frac{6}{25}a^2c^2)(-50a^2b^2c^2)\) |
Answer» (\(\frac{-7}{4}\)ab2c - \(\frac{6}{25}\)a2c2) (-50a2b2c2) = \(\frac{-7}{4}\)ab2c × -50a2b2c2 - \(\frac{6}{25}\)a2c2 × -50a2b2 × c2 = \(\frac{7}{4}\) × 50 × a3 × b4 × c3 - \(\frac{6}{25}\) × - 50 × a4 × b2 × c4 = \(\frac{350}{4}\)a3b4c3 + 12a4b2c4 = \(\frac{175}{2}\)a3b4c3 + 12a4b2c4 here the product is given as [\((-7/4) \) ab2c - \(6/25\) a2c2 ] (-50a2b2c2) = \(225/2\) a3b4c3 + 12 a4b2c4 |
|
398. |
3-2 can be written as:(a) 32 (b) 1/32 (c) 1/3-2 (d) -2/3 |
Answer» (b) 1/32 Explanation: By the law of exponent we know: a-n = 1/an. Hence, 3-2 = 1/32 |
|
399. |
113 = ………………… A) 1221 B) 1331 C) 1441 D) 1113 |
Answer» Correct option is B) 1331 Correct option is (B) 1331 \(11^3=11^2\times11=121\times11=1331\) |
|
400. |
Factorise : \(x^4 + x^2y^2 + y^2\). |
Answer» \(x^4 + x^2y^2 + y^4\) = x4 + 2x2y2 + y4 - x2y2 (Note : Add and subtract x2y2) = (x2 + y2)2 - x2y2 = (x2 + y2)2 - (xy)2 = (x2 + y2 + xy)(x2 + y2 -xy). |
|