Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

351.

Find the degree of each algebraic expression.(i) 3x – 15(ii) xy + yz(iii) 2y2z + 9yz – 7z – 11x2y2(iv) 2y2z + 10yz(v) pq + p2q – p2q2(vi) ax2 + bx + c

Answer»
Algebraic ExpressionDegree
(i) 3x – 151
(ii) xy + yz2
(iii) 2y2z + 9yz – 7z – 11x2y24
(iv) 2y2z + 10yz3
(v) pq + p2q – p2q24
(vi) ax2 + bx + c2
352.

Give two examples for each type of algebraic expression. 

Answer»

Monomial: 

i) 5x2y, 

ii) 32 xyz

Binomial: 

i) ax + by, 

ii) 2z – 5

Trinomial : 

i) ax + by + cz, 

ii) p2 + q2 + r2

Polynomial: 

i) 5x4 – 2x2 + x – 1, 

ii) 6 + 5x – 4x2 + 3y3 – 2z4

353.

Cube of (a + 1) is = ………………… A) a2 + 1 B) a + 2a + 1 C) a + 3a + 3 D) 3a – 3

Answer»

C) a + 3a + 3

Correct option is (C) \(a^3+3a^2+3a+1\)

\((a+1)^3\) \(=(a+1)^2(a+1)\)

\(=(a^2+2a+1)(a+1)\)

\(=a^3+2a^2+a+a^2+2a+1\)

\(=a^3+3a^2+3a+1\)

354.

Find the numerical coefficient of x3y2z, xy2z3, –3xy2z3, 5x3y2z, –7x2y2z2.

Answer»

Numerical coefficient of,

x3y2z = 1

xy2z3 = 1

–3xy2z3 = -3

5x3y2z = 5

–7x2y2z2 = -7

355.

9672 = ………………… A) 93 × 004 B) 93 × 102 C) 83 × 104 D) 93 × 107

Answer»

Correct option is  A) 93 × 004

Correct option is (A) 93 x 104

9672 = 93 \(\times\) 104

356.

a (a – b) + b (a – b) = ……………….. A) a2 – b B) a2 – b2 C) a – b2 D) a/2 – b

Answer»

Correct option is  B) a2 – b2 

Correct option is (B) a2 - b2

a (a – b) + b (a – b) \(=a^2-ab+ab-b^2\)

\(a^2-b^2\)

357.

The area of adjacent square is …………………A) 2a4 B) 2a2 C) (a/2)2 D) 4a2

Answer»

Correct option is  D) 4a2

Correct option is (D) 4a2

Side of given square = 2a.

\(\therefore\) Area of given square \(=(2a)^2=4a^2.\)

358.

Product of two monomials is a monomial? Check. 

Answer»

Yes, the product of two monomials is a monomial. 

∵ 2x × y = 2xy

359.

The degree of a monomial -5/2 xy2z3 isA) 7B) 2C) 3D) 6

Answer»

Correct option is  D) 6

360.

The degree of a monomial  \(\frac{15}{19}\) l3m4 n isA) 8B) 7C) 9D) 12

Answer»

Correct option is  A) 8

361.

Which of the following is a Monomial? A) 7 lm2 n2 B) 100 – (98 ÷ 2) C) 3y2 – x2 y2 + 4xD) 1 + x + x2

Answer»

Correct option is A) 7 lm2 n2

362.

Evaluate using suitable identities.2.07 × 1.93

Answer»

2.07 × 1.93 

= (2 + 0.07) (2 – 0.07) 

= 22 – (0.07)2 

= 3.9951

363.

Simplify and find the value of 4x + x – 2x2 + x – 1 when x = -1.

Answer»

Given expression = 4x + x – 2x2 + x – 1

= 4x + x + x – 2x2 – 1

= – 2x2 + 6x – 1

If x = – 1 then, 

the value of – 2x2 + 6x – 1 

= – 2 (-1)2 + 6( – 1) – 1

= – 2(1) – 6 – 1

= – 2 – 6 – 1

= – 9

364.

Find the value of following monomials, if x =1.(i) -x(ii) 4x(iii) -2x2

Answer»

i) If x = 1 ⇒ – x = – (1)= – 1

ii) If x = 1 ⇒ 4x = 4 x 1 = 4

iii) If x= 1 ⇒ – 2x2 = – 2(1)2 = – 2 × 1= – 2

1. -x = -1
2. 4x = 4(-1) 
         = -4
3. -2x² = -2(-1)²
           =-2(1)
           = -2
365.

Evaluate using suitable identities.497 × 505

Answer»

497 × 505 

= (500 – 3) (500 + 5) 

= 5002 + (–3 + 5) × 500 + (–3) (5) [using (x + a) (x + b) = x2 + (a + b) x + ab] 

= 250000 + 1000 – 15 

= 250985

366.

Fill in the blanks to make the statement true:a2 – b2 = (a + b ) __________.

Answer»

a2 – b2 = (a + b) (a – b) … [from the standard identities]

367.

Evaluate using suitable identities.1812 – 192

Answer»

1812 – 192 

= (181 – 19) (181 + 19) [using a2 – b2 = (a – b) (a + b)] 

= 162 × 200

= 32400

368.

Fill in the blanks to make the statement true.The speed of car is 55 km/hrs. The distance covered in y hours is ________.

Answer»

The speed of car is 55 km/hrs. The distance covered in y hours is 55y.

Because, distance = speed × time

369.

State whether the statements are true (T) or false (F)(a + b)2 = a2 + b2

Answer»

False

Lets recall the formula of (a + b)2.

(a + b)2 = a2 + 2×a×b + b2

⇒ (a + b)2 = a2 + 2ab + b2

But right-hand side of the equation does not match left-hand side of the equation.

That is,

a2 + 2ab + b2 ≠ a2 + b2

⇒ (a + b)2 ≠ a2 + b2

370.

Fill in the blanks to make the statement true.The expression 13 + 90 is a ________.

Answer»

The expression 13 + 90 is a constant.

13 + 90 = 103

371.

State whether the statements are true (T) or false (F).(a – b)2 = a2 – b2

Answer»

False

Expansion of (a – b)2 is,

(a – b)2 = a2 – 2 × a × b + b2

⇒ (a – b)2 = a2 – 2ab + b2

And a2 – 2ab + b2 ≠ a2 – b2

⇒ (a – b)2 ≠ a2 – b2

372.

Fill in the blanks to make the statement true.Like terms in the expression n(n + 1) + 6 (n – 1) are ___________and ________.

Answer»

Like terms in the expression n(n + 1) + 6 (n – 1) are n and 6n.

Consider the given expression, n(n + 1) + 6 (n – 1)

= n2 + n + 6n – 6

= n2 + 7n – 6

Therefore, like terms are n and 6n

373.

Identify the expressions that are in standard form. i) 9x2 + 6x + 8ii) 9x2 + 15 + 7xiii) 9x2 + 7iv) 9x3 + 15x + 3v) 15x2 + x3 + 3xvi) x2y + xy + 3vii) x3 + x2y2 + 6xy

Answer»

(i), (iii), (iv), (vi) are in standard form.

374.

Write five different expressions in standard form.

Answer»

i) ax2 + bx + c

ii) ax + b

iii) 4x3 + 5x2 – 6x + 2

iv) 5x4 – 3x3 – 2x – 2

v) px3 + qx2 + r

375.

State whether the statements are true (T) or false (F)The product of one negative and one positive term is a negative term.

Answer»

True

When we multiply a negative term by a positive term, the resultant will be a negative term, i-e. (-) x (+) = (-).

376.

State whether the statements are true (T) or false (F)The product of two negative terms is a negative term.

Answer»

False

Since, the product of two negative terms is always a positive term, i.e. (-) x (-) = (+).

377.

State whether the statements are true (T) or false (F)(a + b) (a – b) = a2 – b2

Answer»

True

Let us expand (a + b)(a – b).

Multiply each term with the other term which is in multiplication with it.

(a + b)(a – b) = a2 – ab + ab – b2

⇒ (a + b)(a – b) = a2 +(ab – ab) – b2

⇒ (a + b)(a – b) = a2 + 0 – b2

⇒ (a + b)(a – b) = a2 – b2

378.

Fill in the blanks to make the statement true:(a – b)2 + ____________ = a2 – b2

Answer»

(a – b)2 + (2ab – 2b2) = a2 – b2

= (a – b)2 + (2ab – 2b2)

= a2 + b2 – 2ab + 2ab – 2b2

= a2 – b2

379.

Write numerical and algebraic coefficients of terms : 4xy

Answer»

Given the term is 4xy 

Numerical coefficient: 

4 Algebraic coefficient: xy

380.

Add the expression:(3/4)x2, 5 x2, -3x2, -(1/4) x2

Answer»

(3/4)x2, 5 x2, -3x2, -(1/4) x2

In the above questions terms having the same literal factors are like terms.

Now add the like terms,

= (3/4)x2 + 5x2 – 3x2 – (1/4) x2

= (3/4)x2– (1/4) x2 + 5x2 – 3x2

= ((3-1)/4)x2 + 2x2

= (2/4)x2 + 2x2

= (1/2)x2 + 2x2

= ((1 + 4)/2)x2

= (5/2)x2

381.

Add the expression:5a2b, -8a2b, 7a2b

Answer»

5a2b, -8a2b, 7a2b

In the above questions terms having the same literal factors are like terms.

Now add the like terms,

= 5a2b – 8a2b + 7a2b

= 12 a2b – 8a2b

= 4a2b

382.

Which of the following expression is in a standard form? A) ax2 + c + bx B) ax2 + bx + c C) c + bx + ax2 D) ax2 + b + ex3

Answer»

Correct option is B) ax2 + bx + c

383.

From the sum of x2 – y2 – 1, y2 – x2 – 1 and 1 – x2 – y2, subtract -(1 + y2).

Answer»

Sum of x2 – y2 -1, y2 – x2 – 1 and 1 – x2 – y2 = x– y– 1 + y– x– 1 + 1 – x– y2 

On combining the like terms,

= x– x– x– y2 + y– y– 1 – 1 + 1 

= -x2 – y2 – 1

Now, subtract -(1 + y2) from -x2 – y2 -1

= -x2 – y2 -1 – [-(1 + y2)]

= – x– y– 1 + 1 + y2 

= -x2 – y2 + y2 – 1 + 1 

= -x2

384.

If P = -(x-2), Q = -2(y+1) and R=- x+2y, find a,when P+Q+ R=ax.

Answer»

Given, P = -(x-2),Q = -2(y+ 1)and R = -x + 2y 

Also given, P+Q + R=ax

On putting the values of P,Q and R on LHS, we get

-(x-2)+[-2(y+1)]+(-x+2y) = ax 

=> -x+2 + (-2y-2)-x + 2y = ax

=> -x + 2 – 2y – 2 – x+ 2y = ax

On combining the like terms,

-x – x – 2y + 2y + 2 – 2=ax 

=> -2x = ax

By comparing LHS and RHS, we get a = -2

385.

(x + 1) (x – 1) (x2 + 1) = …………….. A) x4 – 1 B) x2 – 1C) 4x – 1 D) x + 1

Answer»

Correct option is  A) x4 – 1

386.

If A = 3x2 - 4x + 1, B = 5x2+ 3x - 8 and C = 4x2 - 7x + 3, then find(A + B)-CB+C-A A-B+C

Answer»

Given, A = 3x2 – 4x +1, B = 5x2 + 3x – 8 and C = 4x2 – 7x + 3

1. (A + B)-C 

= (3x2 -4x +1 + 5x2 + 3x-8) -(4x2 -1x + 3)

On combining the like terms,

= (3x2 + 5x2 – 4x + 3x + 1 – 8) – (4x2 – 1x + 3) 

= (8x2-x-7)-(4x2-7x + 3)

= 8x2-x-7-4x2 + 7x-3 

= 8x2-4x2 -x + 7x-7-3 

= 4x2 + 6x-10

2. B+C-A

= 5x2 + 3x-8+4x2-7x + 3-(3x2-4x + 1))

On combining the like terms,

= (5x2 + 4x2 + 3x-7x-8+ 3)-(3x2 – 4x + 1)

= (9x2 -4x-5)- (3x2 – 4x +1)

= 9x2 -4x-5-3x2 + 4x-1 

= 9x2 – 3x2 – 4x + 4x – 5 -1 

= 6x2-6

3. A+B+C

= 3x2-4x+ 1 +5x2 + 3x-8+4x2-7x+3 

On combining the like terms,

= 3x2 + 5x2 + 4x2 -4x + 3x-7x +1 – 8 + 3 

= 12x2-8x-4

387.

Find the values of following polynomials at m = 1, n = -1 and p = 2(a) m+n+p(b) m2+n2+P2(c) m3+ n3+p3(d) mn+np + pm(e) m3 +n3 + p3 -3mnp(f) m2n2 +n2p2 +p2m2

Answer»

Given, m = 1, n = -1 and p = 2

So, putting m = 1, n = -1 and p = 2 in the given expressions, we get

(a) m+n+p

= 1-1+2

= 2
(b) m2+n2+P2 

=(1)2 + (-1)2 + (2)2 

=1+1+ 4

= 6
(c) m3+ n3+p3 

=(1)3 + (-1)3 + (2)3 

= 1 -1 + 8 

= 8
(d) mn+np+ pm

= (1)(-1)+(-1)(2)+(2)(1)

= -1-2 + 2 

= -1
(e) m3 +n3 + p3 -3mnp 

= (1)3 + (-1)3 + (2)3 -3(1)(-1)(2) 

= 1-1+8+6

= 14
(f) m2n2 +n2p2 +p2m2 

= (1)2 (-1)2 + (-1)2 (2)2 + (2)2 (1)2 

= 1+ 4+ 4

= 9

388.

8x = (52)2 – (48)2 then x = ……………….. A) 12 B) 50 C) 9 D) 26

Answer»

Correct option is  B) 50

Correct option is (B) 50

\(52^2–48^2\) \(=(52-48)\times(52+48)\)

\(=4\times100=400\)

\(\therefore\) 8x = 400

\(\Rightarrow\) \(x=\frac{400}8=50\)

389.

(11 + x)(11 – x) = ………………. A) 121 – x2 B) 121 – x C) 12 – x3 D) 3x – 4

Answer»

Correct option is  A) 121 – x2 

Correct option is (A) 121 – x2

(11 + x) (11 – x) \(=11^2-x^2=121-x^2\)

390.

Define : polynomials..

Answer»

Algebraic expressions in which the variables involved have only non- negative integral exponents are called polynomials. 

For example, by2 – y + 2 is a polynomial while a1/2 + 8a3 – 3 and y–2 + y are not polynomials.

391.

How much is 21a3 -17a2 less than 89a3 - 64a2 + 6a + 16 ?

Answer»

Required expression is

89a3 -64a2+6a+16-(21a3 -17a2)

= 89a3 -64a2+6a+16 -21a3 + 17a2 On combining the like terms,

= 89a3 -21a3 – 64a2 +17a2 + 6a+16 

= 68a3 -47a2 + 6a+16

So,21a3 -17a2 is 68a3-47a2 + 6a+16 less than 89a3 -64a2+6a+16.

392.

a2 – b2 = (a + b) (a – b) is a ………………. A) Identity B) Area C) Place D) None

Answer»

Correct option is  A) Identity

Correct option is (A) Identity

\(a^2-b^2\) = (a + b) (a – b) is true for all a and b.

\(\therefore\) It is an identity.

393.

(x + a) (x – b) = ………………….= A) x2 + ax – bx – ab B) x2 + (a + b) x – abC) x2 – ax – ab D) None

Answer»

A) x2 + ax – bx – ab

Correct option is (A) x2 + ax – bx – ab

(x + a) (x – b) \(=x^2+ax-bx-ab\)

\(=x^2+(a–b)x–ab\)

394.

1012 – 1012 = ……………..A) 101 B) 202 C) 0 D) 401

Answer»

Correct option is C) 0

Correct option is (C) 0

\(101^2–101^2=0\)

395.

a = 13, b = 12 then a2 – b2 = ………………. A) 16 B) 10 C) 25D) 12

Answer»

Correct option is  C) 25

Correct option is (C) 25

a = 13, b = 12

Then \(a^2-b^2\) \(=13^2-12^2\) = 169 - 144 = 25

396.

(3q+7p2-2r3+4) – (4p2-2q+7r3-3) =?(a) (p2+2q+5r3+1) (b) (11p2+q+5r3+1) (c) (-3p2-5q+9r3-7) (d) (3p2+5q-9r3+7)

Answer»

(d) (3p2+5q-9r3+7)

Explanation:

Given (3q+7p2-2r3+4) – (4p2-2q+7r3-3)

According to the rules of subtraction of algebraic equations, we have negative sign will

Becomes positive and so we have to keep the big numerical sign.

Now arrange the variables in rows we get

(3q+7p2-2r3+4) – (4p2-2q+7r3-3) = (3p2+5q-9r3+7)

397.

Find the following products:\((-\frac{7}{4}ab^2c-\frac{6}{25}a^2c^2)(-50a^2b^2c^2)\)

Answer»

(\(\frac{-7}{4}\)ab2c - \(\frac{6}{25}\)a2c2) (-50a2b2c2)

= \(\frac{-7}{4}\)ab2c × -50a2b2c2 - \(\frac{6}{25}\)a2c2 × -50a2b2 × c2

= \(\frac{7}{4}\) × 50 × a3 × b4 × c3 - \(\frac{6}{25}\) × - 50 × a4 × b2 × c4

= \(\frac{350}{4}\)a3b4c3 + 12a4b2c4

= \(\frac{175}{2}\)a3b4c3 + 12a4b2c4

here the product is given as

[\((-7/4) \) ab2c - \(6/25\) a2c2 ] (-50a2b2c2)

\(225/2\) a3b4c3 + 12 a4b2c4

398.

3-2 can be written as:(a) 32 (b) 1/32 (c) 1/3-2 (d) -2/3

Answer»

(b) 1/32

Explanation: By the law of exponent we know: a-n = 1/an.

Hence, 3-2 = 1/32

399.

113 = ………………… A) 1221 B) 1331 C) 1441 D) 1113

Answer»

Correct option is  B) 1331

Correct option is (B) 1331

\(11^3=11^2\times11=121\times11=1331\)

400.

Factorise : \(x^4 + x^2y^2 + y^2\).

Answer»

\(x^4 + x^2y^2 + y^4\) = x4 + 2x2y2 + y4 - x2y2          (Note : Add and subtract x2y2)

= (x2 + y2)2 - x2y2

= (x2 + y2)2 - (xy)2

= (x2 + y2 + xy)(x2 + y2 -xy).