InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Of which of the binomials given below is the m2n2+ 14mnpq + 49p2q2 the expansion?(A) (m + n) (p + q) (B) (mn – pq) (C) (7mn + pq)(D) (mn + 7pq) |
|
Answer» (D) (mn + 7pq) Here, square root of the first term = mn Square root of the last term = 7pq ∴ Required binomial = (mn + 7pq)2 |
|
| 2. |
Which of the options given below is the square of the binomial(A) 64 - 1/x2(B) 64 + 1/x2(C) 64 - 16/x + 1/x2(D) 64 + 16/x + 1/x2 |
|
Answer» (C) 64 - 16/x + 1/x2 = (8 - 1/x)2 = 82 - 2 x 8 x 1/2 + (1/x)2 …[(a – b)2 = a2 – 2ab + b2 ] = 64 - 16x + 1/x2 |
|
| 3. |
Expand:i. (5a + 6b)2ii. (a/2 + b/3)2iii. (2p - 3q)2iv. (x - 2/x)2 |
|
Answer» i. (5a + 6b)2 Here, A = 5a and B = 6b (5a + 6b)2 = (5a)2 + 2 × 5a × 6b + (6b)2 …. [(A + B)2 = A2 + 2AB + B2 ] ∴ (5a + 6b)2 = 25a2 + 60ab + 36b2 ii. (a/2 + b/2)2 Here A = a/2 and B = b/3 (a/2 + b/3)2 = (a/2)2 + 2 x a/2 x b/3 + (b/3)2 ...[(A + B) = A2 + 2AB + B2] ∴ (a/2 + b/3)2 = a2/4 + ab/3 + b2/9 iii. (2p – 3q)2 Here, a = 2p and b = 3q (2p – 3q)2 = (2p)2 – 2 × (2p) × (3q) + (3q)2 …. [(a – b)2 = a2 – 2ab + b2 ] ∴ (2p – 3q)2 = 4p2 – 12pq + 9q2 iv. (x - 2/x)2 Here a = x and b = 2/x (x - 2/x)2 = x2 - 2 x (x) x 2/x + (2/x)2 ...[(a - b)2 = a2 - 2ab + b2] (x - 2/x)2 = x2 - 4 + 4/x2 |
|
| 4. |
Use an expansion formula to find the values of: i. (997)2ii. (102)2iii. (97)2iv. (1005)2 |
|
Answer» i. (997)2 = (1000 – 3)2 Here, a = 1000 and b = 3 (1000 – 3)2 = (1000)2 – 2 x 1000 x 3 + 32 …. [(a – b)2 = a2 – 2ab + b2 ] = 1000000 – 6000 + 9 = 994009 ∴ (997)2 = 994009 ii. (102)2 = (100 + 2)2 Here, a = 100 and b = 2 (100 + 2)2 = (100)2 + 2 x 100 x 2 + 22 …. [(a + b)2 = a2 + 2ab + b2 ] = 10000 + 400 + 4 = 10404 ∴ (102)2 = 10404 iii. (97)2 = (100 – 3)2 Here, a = 100 and b = 3 (100 – 3)2 = (100)2 – 2 x 100 x 3 + 32 …. [(a – b)2 = a2 – 2ab + b2 ] = 10000 – 600 + 9 = 9409 ∴ (97)2 = 9409 iv. (1005)2 = (1000 + 5)2 Here, a = 1000 and b = 5 (1000 + 5)2 = (1000)2 + 2 x 1000 x 5 + 52 …. [(a + b)2 = a2 + 2ab + b2 ] = 1000000+ 10000 + 25 = 1010025 ∴ (1005)2 = 1010025 |
|
| 5. |
Use the given values to verify the formulae for squares of binomials. i. a = -7, b = 8 ii. a = 11,b = 3 iii. a = 2.5,b = 1.2 |
|
Answer» i. (a + b)2 = (-7 + 8)2 = 12 = 1 a2 + 2ab + b2 = (-7)2 + 2 x (-7) x 8 + 82 = 49 – 112 + 64 = 1 ∴(a + b)2 = a2 + 2ab + b2 (a – b)2 = (-7 – 8)2 = (-15)2 = 225 a2 – 2ab + b2 = (-7)2 – 2 x (-7) x 8 + (8)2 = 49 + 112 + 64 = 225 ∴(a – b)2 = a2 – 2ab + b2 ii. (a + b)2 = (11 + 3)2 = 142 = 196 a2 + 2ab + b2 = 112 + 2 x 11 x 3 + 32 = 121 + 66 + 9 = 196 ∴(a + b)2 = a2 + 2ab + b2 (a – b)2 = (11 – 3)2 = 82 = 64 a2 – 2ab + b2 = 112 – 2 x 11 x 3 + 32 = 121 – 66 + 9 = 64 ∴(a – b)2 = a2 – 2ab + b2 iii. (a + b)2 = (2.5 + 1.2)2 = 3.72 = 13.69 a2 + 2ab + b2 = (2.5)2 + 2 x 2.5 x 1.2 + (1.2)2 = 6.25 + 6 + 1.44 = 13.69 ∴(a + b)2 = a2 + 2ab + b2 (a – b)2 = (2.5 – 1.2)2 = 1.32 = 1.69 a2 – 2ab + b2 = (2.5)2 – 2 x 2.5 x 1.2 + (1.2)2 = 6.25 – 6 + 1.44 = 1.69 ∴(a – b)2 = a2 – 2ab + b2 |
|
| 6. |
Use the formula to multiply the following: i. (x + y)(x – y) ii. (3x – 5)(3x + 5) iii. (a + 6)(a – 6iv. (x/5 + 6) (x/5 - 6) |
|
Answer» i. Here, a = x, b = y (x + y)(x – y) = x2 – y2 …. [(a + b)(a – b) = a2 – b2 ] ii. Here, a = 3x, b = 5 (3x – 5) (3x + 5) = (3x)2 – 52 …. [(a + b)(a – b) = a2 – b2 ] = 9x2 – 25 iii. Here, A = a, B = 6 (a + 6) (a – 6) = a2 – 62 …. [(A + B)(A – B) = A2 – B2 ] = a2 – 36 iv. Here, a = x/2 , b = 6 (x/5 + 6) (x/5 - 6) = (x/5)2 - (6)2…. [(a + b)(a – b) = a2 – b2 ] = x2 /25 - 36 |
|
| 7. |
Factorize the following expressions: i. p2 – q2ii. 4x2 – 25y2 iii. y2 – 4 iv. P2 - 1/25v. 9x2 - 1/16y2 |
|
Answer» i. p2 – q2 Here, a = p, b = q ∴ p2 – q2 = (p + q)(p – q) ….[(a2 – b2 ) = (a + b)(a – b)] ii. 4x2 – 25y2 = (2x)2 – (5y)2 Here, a = 2x, b = 5y ∴ (2x)2 – (5y)2 = (2x + 5y)(2x – 5y) ….[(a2 – b2 ) = (a + b)(a – b)] iii. y2 – 4 = y2 – 22 Here, a = y, b = 2 ∴ y2 – 22 = (y + 2)(y – 2) ….[(a2 – b2 ) = (a + b)(a – b)] iv P2 - 1/25 Here a = 1/25, b = 1/5 P2 - (1/5)2 = (P + 1/5) (p - 1/5) ... [(a2 - b2 ) = (a + b)(a - b)] v. 9x2 - 1/16y2 Here a = 3x, b= 1/4y ∴ (3x)2 - (1/4y)2 = (3x + 1/4y)(3x - 1/4y) ….[(a2 – b2) = (a + b)(a – b)] |
|
| 8. |
Factorize the following expressions and write them in the product form. i. 201a3b2ii. 91xyt2 iii. 24a2b2iv. tr2s3 |
|
Answer» i. 201a3b2 = 3 × 67 × a3 × b2 = 3 × 67 × a × a × a × b × b ii. 91xyt2 = 7 × 13 × x × y × t2 = 7 × 13 × x × y × t × t iii. 24a2 b2 = 2 × 2 × 2 × 3 × a2 × b2 = 2 × 2 × 2 × 3 × a × a × b × b iv. tr2 s3 = t × r2 × s3 = t × r × r × s × s × s |
|
| 9. |
Use the formula to find the values: i. 502 × 498 ii. 97 × 103iii. 54 × 46 iv. 98 × 102 |
|
Answer» i. 502 × 498 = (500 + 2) (500 – 2) Here, a = 500, b = 2 ∴ (500 + 2) (500 – 2) = 5002 – 22 …. [(a + b)(a – b) = a2 – b2 ] = 250000 – 4 = 249996 ∴ 502 × 498 = 249996 ii. 97 × 103 = (100 – 3) (100 + 3) Here, a = 100, b = 3 ∴ (100 – 3) (100 + 3) = 1002 – 32 …. [(a + b)(a – b) = a2 – b2 ] = 10000 – 9 = 9991 ∴ 97 × 103 = 9991 iii. 54 × 46 = (50 + 4) (50 – 4) Here, a = 50, b = 4 ∴ (50 + 4) (50 – 4) = 502 – 42 …. [(a + b)(a – b) = a2 – b2 ] = 2500 – 16 = 2484 ∴ 54 × 46 = 2484 iv. 98 × 102 = (100 – 2) (100 + 2) Here, a = 100, b = 2 ∴ (100 – 2) (100 + 2) = 1002 – 22 …. [(a + b)(a – b) = a2 – b2 ] 10000 – 4 = 9996 ∴ 98 × 102 = 9996 |
|