InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
A point moves so that the sum of its distances from `(a e ,0)a n d(-a e ,0)`is `2a ,`prove that the equation to its locus is `(x^2)/(a^2)+(y^2)/(b^2)=1`, where `b^2=a^2(1-e^2)dot` |
|
Answer» AP+BP=2h `AP=sqrt((h-he)^2+k^2)` `BP=sqrt((h+he)^2+k^2` `AP+BP=2h` `(AP+BP)^2=4a^2` `AP^2+BP^2+2(AP)(BP)=4a^2` `(h-ae)^2+k^2+(h+ae)^2+k^2+2sqrt(((h-ae)^2+k^2)(h+ae)^2+k^2` `h^2/a^2+k^2/b^2=1` Putting h=x,k=y `x^2/a^2+y^2/b^2=1`. |
|
| 2. |
Find the point to which the origin should be shifted so that theequation `y^2-6y-4x+13=0`is transformed to the form `y^2+A x=0.` |
|
Answer» `y^2+Ax=0` `y^2-6y+(3^2-3^2)-4x+13=0` `(y-3)^2+4-4x=0` `(y-3)^2+4(1-x)=0` `(y-3)^2-4(x-1)=0` `y^2+Ax=0` `A=-4`.`y-3=0` `y=3` `x-1=0` `x=1` Point(1,3). |
|
| 3. |
If the axes are shifted to the point `(1,-2)`without rotation, what do the following equations become?`2x^2+y^2-4x+4y=0``y^2-4x+4y+8=0` |
|
Answer» First equation `2x^2+y^2-4x+4y=0` `2(x-1)^2+(y+2)^2-4(x-1)+4(y+2)=0` `2(x^2+1-2x)+y^2+4+4y-4x+4+4y+8=0` `2x^2+2-2x+y^2+4-4y-4x+4+4y+8=0` `2x^2+y^2-6x+8y+18=0` `y^2-4x+4y+8=0` `y^2+8y-4x+24=0`. |
|
| 4. |
Find the locus of a point, such that the join of `(-5,1)a n d(3,2)`subtends a right angle at the moving point. |
|
Answer» `y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)` Equation of AB `y-1=(2-1)/(3+5)(x+5)` `y-1=1/8(x+5)` `m=1/8` Slope of PD=-8 at point(h,k) `y-k=-8(x-h)`. |
|
| 5. |
Find the equation of the locus of a point which moves such that theratio of its distances from `(2,0)a n d(1,3)`is `5: 4.` |
|
Answer» `(AP)/(BP)=5/4` `(AP)^2/(BP)^2=(25/16)``d=sqrt((x_1-x_2)^2+(y_1-y_2)^2` `d^2=(x_1-x_2)^2+(y_1-y_2)^2` `(AP)^2=(h-2)^2+(k-0)` `(BP)^2=(h-1)^2+(k-3)^2` `(AP)^2/(BP)^2=25/16` `((h-2)^2+k^2)/((h-1)^2+(k-3)^2)=25/16` `16h^2+64-64h+16k^2=25h^2+25-50h+25k^2+225-150h` `9h^2+9k^2+14h-150k+186=0` Putting h=x,k=y `9x^2+9y^2+14x-150y+186=0`. |
|
| 6. |
`A(5,3), B(3,-2)`are two fixed points; find the equation to the locus of a point `P`which moves so that the area of the triangle `P A B`is 9 units. |
|
Answer» area of triangle`=1/2|[x_!,y_1,1],[x_2,y_2,1],[x_3,y_3,1]|` `/_=1/2|[h,k,1],[5,3,1],[3,-2,1]|=9` `/_=h(3+2)-k(5-3)+1(-10-9)=18` `5h-2k-19=18` `5h-2k=37` putting h=x,k=y `5x-2y=37`. |
|