InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If `A+B+C=pi`, prove that : `sin (B+C-A) + sin (C+A-B) + sin (A+B-C)=4sinA sinB sinC` |
|
Answer» `LHS=sin(A+B+C-2A)+sin(A+B+C-2B)-sin(A+B+C-2C)` `=sin (pi-2A)+sin(pi-2B)-sin(pi-2C)` `=sin2A+sin2B-sin2C.` |
|
| 2. |
If `A+B+C=pi`, prove that : `cos2A+cos2B-cos2C=1-4sinA sinB cosC` |
|
Answer» We have `LHS=(cos2A+cos 2B)-cos 2C` `=2cos (A+B)cos (A-B)-2cos^(2)C+1` `=2cos (pi-C)cos (A-B)-2cos^(2)C+1` `=-2cos C cos (A-B)-2cos^(2)C+1` `=1-2 cos C [ cos (A-B)+cosC]` `=1-2cos C [cos(A-B)+cos{pi-(A+b)}]` `=1-2cos C [ cos (A-B)-cos (A+B)]` `=1-2 cos C [2sin A sin C=RHS.` `therefore cos 2A+cos2B-cos2C=1-4sin A sin B cos C.` |
|
| 3. |
If `A+B+C=pi`, prove that : `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2 =1` |
|
Answer» Here , `A+B+C=pi` `implies((A)/(2)+(B)/(2))=((pi)/(2)-( C)/(2))` `implies tan ((A)/(2)+(B)/(2))=tan ((pi)/(2)-( C)/(2))=cot ""(C)/(2)` `implies (tan ""(A)/(2)+tan ""(B)/(2))/(1-tan""(A)/(2)tan""(B)/(2))=(1)/(tan""( C)/(2))` `implies tan ""(C)/(2)tan ""(A)/(2)+tan ""(B)/(2)tan ""( C)/(2)=1-tan""(A)/(2) tan""(B)/(2)` `implies tan""(A)/(2)tan ""(B)/(2)+tan ""(B)/(2)tan ""( C)/(2)+tan""(C )/(2)tan""(A)/(2)+1.` |
|
| 4. |
If `A+B+C=pi` then prove that `cos^2 (A/2)+cos^2 (B/2)-cos^2 (C/2)=2cos(A/2)cos(B/2)sin(C/2)` |
|
Answer» We have `LHS=cos^(2)""(A)/(2)+cos^(2)""(B)/(2)-cos^(2)""(C)/(2)` `=(1)/(2)(1+cosA)+(1)/(2)(1+cosB)-(1)/(2)(1+cos C)` `=(1)/(2)+(1)/(2)(cosA+cos B-cos C)` `=(1)/(2)+(1)/(2)[(4cos""(A)/(2)cos""(B)/(2)sin""(C )/(2))-1]` `=2 cos ""(A)/(2)cos""(B)/(2)""sin""(C)/(2)=2cos ""(A)/(2)cos""(B)/(2)sin""( C)/(2).` |
|
| 5. |
If `A+B+C=pi `, prove that `cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos C.` |
|
Answer» We have `LHS=cos 2A+cos 2B+cos 2C` `=2cos(A+B)cos (A-B)+2cos^(2)C-1` `=2cos (pi-C)cos (A-B)+2cos^(2)C-1` `=-2cos C cos (A-B)+2cos^(2)C-1` `=-2cos C[cos (A-B)-cosC]-1` `=-1-2cos C[cos (A-B)-cos {pi-(A-B)}]` `=-1-2cos C[cos(A-B)+cos(A+B) ]` `=-1-4cos A cos B cos C =RHS.` `therefore cos 2A +cos 2B +cos2C=-1-4cos A cos B cos C.` |
|