Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

451.

The area of the triangle formed by the points A(2,0), B(6,0) and C(4,6) is A. 24 sq. unitsB. 12 sq. unitsC. 10 sq. unitsD. none of these

Answer»

If (x1, y1), (x2 , y2), (x3, y3) (x1, y1) (x2, y2), (x3, y3) are the vertices of a triangle then its area is given by 

Area = [1/2 (x1(y2 −y3)+x2 (y3 −y1 )+x3 (y1 −y2 ))]

Area = \(\frac{1}2\)[(2(0-6)+6(6-0)+4(0-0)]

⇔ \(\frac{1}2\)[-12+36+0]

⇒ 12 sq. units

452.

The ordinate of any point on x-axis isA. 0B. 1C. -1D. any number

Answer»

The ordinate of any point on x-axis is always zero. This means that this point hasn’t covered at any distance on y-axis.

453.

The abscissa of any point on y-axis isA. 0B. 1C. -1D. any number

Answer»

The abscissa of any point on y-axis is always zero. This means that this point hasn’t covered at any distance on x-axis.

454.

The perpendicular distance of the point P(4,3) from y-axis isA. 4B. 3C. 5D. none of these

Answer»

The perpendicular distance of any point from y-axis is always equal to the value of abscissa

455.

A point whose abscissa and ordinate are 2 and -5 respectively lies in A. First quadrantB. Second quadrantC. Third quadrantD. Fourth quadrant

Answer»

As we know in the fourth coordinate abscissa is positive and ordinate is negative.

456.

The abscissa of a point is positive in the A. First and Second quadrantB. Second and Third quadrantC. Third and Fourth quadrantD. Fourth quadrant

Answer»

We know that abscissa is always positive in first and fourth coordinate and ordinate is always positive in first and second coordinate.

457.

A point whose abscissa is -3 and ordinate 2 lies in A. First quadrantB. Second quadrantC. Third quadrantD. Fourth quadrant

Answer»

As we know that abscissa is negative in second and third coordinate and ordinate is positive in first and second coordinate. Therefore the given point -3, 2 lies in second coordinate.

458.

The perpendicular distance of the point P(4,3) from x-axis isA. 4B. 3C. 5D. none of these

Answer»

The perpendicular distance of any point from x-axis is always equal to the value of ordinate.

459.

Two points having same abscissa but different ordinates lie on A. x-axisB. y-axisC. a line parallel to y-axisD. a line parallel to x-axis

Answer»

Two points having same abscissa but different ordinate always amke a line which is parallel to y-axis.

460.

If the abscissa of any point is zero then that point will lie :  (A) on X-axis (B) on Y-axis (C) at origin (D) None of these

Answer» The correct option is (B)
461.

The abscissa of a point is distance of the point from :  (A) X-axis (B) Y-axis (C) Origin (D) None of these 

Answer» The correct option is (B)
462.

The y co-ordinate of a point is distance of that point from : (A) X-axis (B) Y-axis (C) Origin (D) None of these 

Answer» The correct option is (A)
463.

If both co-ordinates of any point are negative then that point will lie in :  (A) First quadrant (B) Second quadrant (C) Thirst quadrant (D) Fourth quadrant

Answer» The correct answer is (C)
464.

If P divides the line joining A(x1 , y1) and B(x2 , y2 ) internally in the ratio m : m , then P isA) \(\left(\cfrac{m_1x_2+m_2y_2}{m_1-m_2},\cfrac{m_1 x_1+m_2y_1}{m_1-m_2}\right)\)B) \(\left(\cfrac{m_1x_1+m_2x_2}{m_1-m_2},\cfrac{m_1 y_1+m_2y_1}{m_1-m_2}\right)\)C) \(\left(\cfrac{m_1x_2+m_2x_1}{m_1+m_2},\cfrac{m_1 y_2+m_2y_1}{m_1+m_2}\right)\)D) \(\left(\cfrac{m_1x_2+m_2x_1}{m_1+m_2},\cfrac{m_1 y_1+m_2y_2}{m_1+m_2}\right)\)

Answer»

Correct option is C) \(\left(\cfrac{m_1x_2+m_2x_1}{m_1+m_2},\cfrac{m_1 y_2+m_2y_1}{m_1+m_2}\right)\)

465.

If the point (x1 , y1 ) lies in Q and the point (x2 ,y2 ) lies in Q then (x1 y2 ) lies in A) Q4 B) Q1 C) Q2 D) Q3

Answer»

Correct option is (D) Q3

\(\because\) \((x_1,y_1)\) lies in \(Q_2\)

\(\therefore\) \(x_1<0\) & \(y_1>0\)

Also given that \((x_2,y_2)\) lies in \(Q_3.\)

\(\therefore\) \(x_2<0\)\(y_2<0\)

\(\because\) \(x_1<0\) & \(y_2<0\)

\(\therefore\) \((x_1,y_2)\) lies in \(Q_3\)

Correct option is  D) Q3

466.

If the centroid of the triangle formed with (a, b), (b, c) and (c, a) is O(0,0), then a3 + b3 + c3 = A) a + b + cB) \(\cfrac{a + b + c}3\)C) \(\cfrac{a b c}3\)D) 3abc

Answer»

Correct option is (D) 3abc

Centroid of triangle whose vertices are \(A(a,b),B(b,c)\;\&\;C(c,a)\) is \((\frac{a+b+c}3,\frac{b+c+a}3)=(0,0)\)         (Given)

\(\Rightarrow\) \(\frac{a+b+c}3=0\)                (By comparing)

\(\Rightarrow\) \(a+b+c=0\)

\(\because\) If \(a+b+c=0,\) then \(a^3+b^3+c^3=3abc\)

Correct option is D) 3abc

467.

If P = {3x|x ∈N,x ≤ 50}, Q = {5x|x ∈N, x ≤ 30}, then n(P ∩ Q) =…………….. A) 5 B) 8 C) 2D) 15

Answer»

Correct option is (C) 2

\(P=\{3x|x\in N,x\leq50\}\)

\(\Rightarrow P=\{3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48\}\)

And \(Q=\{5x|x\in N,x\leq30\}\)

\(\Rightarrow Q=\{5,10,15,20,25,30\}\)

\(\therefore\) \(P\cap Q=\{15,30\}\)

\(\therefore\) \(n(P\cap Q)=2\)

Correct option is C) 2

468.

The distance of P(3,4) from the x-axis is (a) 3 units (b) 4 units (c) 5 units (d) 1 unit

Answer»

Correct answer is (b) 4 units

The y-coordinate the distance of the point from the x - axis

Here, the y - coordinate is 4.

469.

If the points A (-2,1), B (a, b) and C (4,-1) are collinear and a – b = 1, find the values of a and b.

Answer»

The given points A(−2, 1), B(a, b) and C(4, −1) are collinear. 

Area of the triangle having vertices (x1,y1), (x2,y2) and (x3,y3

\(\frac{1}2\) |x1(y2-y3)+x2(y3-y1)+x3(y1-y2)| 

Given that area of ∆ABC = 0 

∴ −2[b − ( − 1)] + a( − 1 – 1 ) + 4 ( 1 –b ) = 0 

-2b – 2 − 2a + 4 − 4b = 0 

− 2a − 6b = − 2 

a + 3b = 1 …(1) 

Also it is given that a – b = 1 …(2) 

Solving 1 and 2 simultaneously, 

b + 1 + 3b = 1 

4b = 0 

∴ b = 0 

∴ a =1 

Hence, 

the values of a and b are 1 and 0.

470.

If A (-3, 5), B (-2,-7), C (1,-8) and D (6, 3) are the vertices of a quadrilateral ABCD, find its area.

Answer»

Given vertices of a quadrilateral ABCD are A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) 

Area of the quadrilateral ABCD = Area of ∆ABC + Area of ∆ACD 

Area of the triangle having vertices (x1,y1), (x2,y2) and (x3,y3

\(\frac{1}2\) |x1(y2-y3)+x2(y3-y1)+x3(y1-y2)| 

Area of ∆ABC = \(\frac{1}2\) | − 3[ − 7 − ( − 8 )] + ( − 2) ( − 8 – 5 ) + 1 [ 5 − (− 7) ] | 

\(\frac{1}2\) | − 3 + 26 + 12 | 

\(\frac{35}2\) sq. units 

Area of ∆ACD = \(\frac{1}2\) |− 3( − 8 – 3 ) + 1( 3 – 5 ) + 6[ 5 − ( − 8 ) ] | 

\(\frac{1}2\) | 33 – 2 + 78 | 

\(\frac{109}2\) sq. units 

Area of the quadrilateral ABCD = \(\frac{35}2\)\(\frac{109}2\) = 72 sq. units 

∴Hence, 

the area of the quadrilateral is 72 sq. units.

471.

If P (-5, - 3), Q (-4, -6), R (2,-3) and S (1, 2) are the vertices of a quadrilateral PQRS, find its area.

Answer»

Let P(−5,−3); Q(−4,−6); R(2,−3) and S(1,2) be the vertices of quadrilateral PQRS. 

Area of the quadrilateral PQRS = Area of ∆PQR + Area of ∆PSR 

Area of the triangle having vertices (x1,y1), (x2,y2) and (x3,y3

\(\frac{1}2\) |x1(y2-y3)+x2(y3-y1)+x3(y1-y2)| 

Area of ∆PQR = \(\frac{1}2\) |− 5( − 6 + 3 ) − 4( − 3 + 3 ) + 2( −3 + 6) | 

\(\frac{1}2\) |15 + 0 + 6| 

\(\frac{21}2\) sq. units 

Area of ∆PSR = \(\frac{1}2\) | − 5( 2 + 3 ) + 1( − 3 + 3 ) + 2( − 3 − 2) | 

\(\frac{1}2\) | − 25 + 0 – 10 | 

\(\frac{25}2\) sq. units 

Area of the quadrilateral PQRS = \(\frac{21}2\)+\(\frac{25}2\) = 28 sq. units 

∴Hence, 

the area of the quadrilateral is 28 sq. units. 

472.

Find the area of the triangle PQR with Q (3, 2) and the mid-points of the sides through Q being (2, -1) and (1, 2).

Answer»

Let the co-ordinates of P and R be (a,b) and (c,d) and coordinates of Q are (3, 2) 

By midpoint formula. 

x = \(\frac{x_1+x_2}2\) , y = \(\frac{y_1+y_2}2\)

(2 , - 1) is the mid-point of PQ. 

∴ 2 = \(\frac{3+a}2\) and -1 = \(\frac{2+b}2\)

∴ a = 1 and b = -4 

∴ Coordinates of P are (1, -4) 

(1 , 2) is the mid-point of QR. 

∴ 1 = \(\frac{3+c}2\) and 2 = \(\frac{2+d}2\)

∴ c = -1 and d = 2 

∴ Coordinates of P are (-1, 2) 

Area of the triangle having vertices (x1,y1), (x2,y2) and (x3,y3

\(\frac{1}2\) |x1(y2-y3)+x2(y3-y1)+x3(y1-y2)| 

Area of ∆PQR = \(\frac{1}2\) | 3( − 4 – 2 ) + 2( − 1 – 1) + 1( 2 − 4) | 

\(\frac{1}2\) | − 18 − 4 − 2 | 

= 12 sq. units 

Hence the area of ∆PQR is 12 sq. units