Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

401.

The distance between the point (5, -1) and the origin is (1) √24(2) √37(3) √26(4) √17

Answer»

(3) √26

Distance = \(\sqrt{(5-0)^2+(-1-0)^2}\)

\(\sqrt{5^2+1^2}=\sqrt{26}\)

402.

Write the statement given below as a linear equation two in variables. “The sum of two numbers x and y is 75”.

Answer»

The sum of two numbers x and y is 75.

∴ x + y = 75

403.

If x = 2 – α and y = 2 + α in a solution of 5x + 3y – 7 = 0 and x = 2β + 1 and y = β – 1 in a solution of 3x – 2y + 6 = 0 then find the value of α + β.

Answer»

Given equation = 5x + 3y – 7 = 0 

x = 2 – α and y = 2 + α 

∴ 5(2 – α) + 3(2 + α) – 7 = 0 

⇒ 10 – 5α+ 6 + 3α – 7 = 0 

⇒ 9 – 2α = 0 

⇒ 2α = 9 ⇒ α = 9/2 = 4.5 

Given equation 3x – 2y + 6 = 0 

x = 2β + 1 and y = β – 1 

∴ 3(2β + 1)- 2(β – 1) + 6 = 0 

⇒ 6β + 3 – 2β + 2 + 6 = 0

⇒ 4β + 11 = 0 ⇒ β = -11/4

∴ α + β = 9/2 - 11/4 = \(\frac {18-11}{4} = \frac {7}{4}\)

404.

X – intercept of the line ax + by + c = 0 is A) \(\cfrac{-c}a\)B) \(\cfrac{c}a\)C) \(\cfrac{a}c\)D) \(\cfrac{1}c\)

Answer»

Correct option is (A) \(\frac{-c}{a}\)

Given line is ax+by+c = 0

\(\Rightarrow ax+by=-c\)

\(\Rightarrow\frac{ax}{-c}+\frac{by}{-c}=1\)

\(\Rightarrow\frac{x}{\frac{-c}{a}}+\frac{y}{\frac{-c}{b}}=1\)

By comparing with intercept form of line, we get

X-intercept \(=\frac{-c}a\) and Y-intercept \(=\frac{-c}b\)

Hence, X-intercept of the line ax+by+c = 0 is \(\frac{-c}{a}.\)

Correct option is A\(-\cfrac{c}a\)

405.

The point whose abscissa is equal to its ordinate and which is equidistant from A(–1, 0) and B(0, 5) is(a) (1, 1) (b) (2, 2) (c) (–2, –2) (d) (3, 3)

Answer»

(b) (2, 2)

Let the point be P whose abscissa = ordinate = a. 

∴ P ≡ (a, a) 

Given, PA = PB 

⇒ (a + 1)2 + a2 = a2 + (a – 5)2 

⇒ 2a2 + 2a + 1 = 2a2 – 10a + 25 

⇒ 12a = 24 ⇒ a = 2. 

∴ The point is (2, 2).

406.

Which of the following points lie on the axes ? Also name the axis. i) (-5,-8) ii) (0, 13) iii) (4, – 2) iv) (- 2,0) v) (0, – 8) vi) (7,0) vii) (0,0)

Answer»

The points (ii) (0,13) ; (v) (0,- 8) lie on Y – axis. 

The points (iv) (- 2, 0), (vi) (7, 0) lie on X – axis. 

The point (vii) (0, 0) lie on both X – axis and Y – axis. 

The points (i) (- 5, – 8); (iii) (4, – 2) do not lie on any axis.

407.

The position of (3, 4) and (4, 3) are not the same on graph. Why?

Answer»

Given points (3, 4) and (4, 3) having x and y coordinates are equal.

408.

The points such as (0, x), (0, -x), (0, y) and (0, -y) lie on the same line. Name the line.

Answer»

That line is Y – axis.

409.

What is the general form of the points which lie on X – axis.

Answer»

The general form of points lying on X – axis is (x, 0).

410.

Which axis the points such as (0, x), (0, y), (0, 2) and (0, – 5) lie on ? Why ?

Answer»

All the above points lie on Y – axis, since the X – coordinate of all these points is zero.

411.

If the slope of the line through (2, -7) and (x, 5) is 3 then x = A) 4 B) 5 C) 6 D) 7

Answer»

Correct option is (C) 6

Slope of line through points (2, -7) and (x, 5) is

\(m=\frac{y_2-y_1}{x_2-x_1}\)

\(=\frac{5-(-7)}{x-2}=\frac{12}{x-2}\)

But given that slope is 3.

\(\therefore\) \(\frac{12}{x-2}=3\)

\(\Rightarrow x-2=\frac{12}3=4\)

\(\Rightarrow x=4+2=6\)

Correct option is C) 6

412.

The equation of X – axis is A) y = 0 B) x = 0 C) y = x D) x + y = 1

Answer»

Correct option is (A) y = 0

The equation of X–axis is y = 0

Correct option is  A) y = 0

413.

Which of the points lie on Y – axisA) (2, 0), (3, 0) B) (1, 2), (2, 2) C) (0, – 2), (0, 2) D) (- 5, 3), (2, 3)

Answer»

Correct option is (C) (0, –2), (0, 2)

Points which lies on Y–axis has x-coordinate zero.

\(\because\) (0, – 2) & (0, 2) have x-coordinate zero.

Thus, both points (0, –2) & (0, 2) lie on Y-axis.

C) (0, – 2), (0, 2)

414.

Find the value of k for which of (7, -2), (5, 1), (3, k) are collinearA) -4B) 4C) -5D) 5

Answer»

Correct option is (B) 4

Given that points (7, -2), (5, 1), (3, k) are collinear.

\(\therefore\) Area of formed triangle is zero.

\(\therefore\frac12|7(1-k)+5(k-(-2))+3(-2-1)|=0\)

\(\Rightarrow|7-7k+5k+10-9|=0\)

\(\Rightarrow|-2k+8|=0\)

\(\Rightarrow-2k+8=0\)

\(\Rightarrow2k=8\)

\(\Rightarrow k=\frac82=4\)

Correct option is B) 4

415.

The distance between the points (cosθ, sinθ) and (-sinθ, cosθ) is A) 1 B) √2 C) 2 D) √3

Answer»

Correct option is (B) √2

Distance between points \(A(cos\,\theta,sin\,\theta)\;and\;B(-sin\,\theta,cos\,\theta)\) is \(AB=\sqrt{(-sin\,\theta-cos\,\theta)^2+(cos\,\theta-sin\,\theta)^2}\)

\(=\sqrt{sin^2\,\theta+cos^2\,\theta+2\;sin\,\theta\,cos\,\theta+cos^2\,\theta\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+sin^2\,\theta-2\;sin\,\theta\,cos\,\theta}\)

\(=\sqrt{2(sin^2\,\theta+cos^2\,\theta)}\)

\(=\sqrt{2\times1}\)           \((\because sin^2\,\theta+cos^2\,\theta=1)\)

\(=\sqrt{2}\) units

Correct option is B) √2

416.

Find the centroid of (-1, 3), (6, -3), (-3, 6)A) \((\cfrac{2}{3},2)\)B) \((1,\cfrac{2}{3})\)C) \((-1,\cfrac{2}{3})\)D) \((-\cfrac{2}{3},1)\)

Answer»

Correct option is (A) \((\frac{2}{3},2)\)

Centroid of (-1, 3), (6, -3) and (-3, 6) is

\(\left(\frac{-1+6+(-3)}3,\frac{3+(-3)+6}3\right)\)

\(=(\frac{6-4}3,\frac{6}3)=(\frac{2}{3},2)\)

Correct option is A) \((\cfrac{2}{3},2)\)

417.

The distance of a point from Y – axis is called ………………A) y – coordinate B) x – coordinate C) origin D) (0, 0)

Answer»

Correct option is (B) x–coordinate

The distance of a point from Y-axis is called its x-coordinate or abscissa.

Correct option is B) x – coordinate

418.

The perimeter of a triangle formed by the points (0,0), (1,0)and (0, 1) is …………….units. A) √2 B) 2 + √2 C) 2 – √2 D) 2 √2

Answer»

Correct option is (B) 2 + √2

Given vertices of triangle are \(A(0,0),B(1,0)\;and\;C(0,1).\)

\(\therefore\) \(AB=\sqrt{(1-0)^2+(0-0)^2}\)

\(=\sqrt{1+0}\)

= 1 units,

\(BC=\sqrt{(0-1)^2+(1-0)^2}\)

\(=\sqrt{1+1}\)

= \(\sqrt2\) units

and \(AC=\sqrt{(0-0)^2+(1-0)^2}\)

\(=\sqrt{0+1}\)

= 1 units

\(\therefore\) Perimeter of formed triangle ABC \(=AB+BC+AC\)

\(=(1+\sqrt2+1)\) units

\(=2+\sqrt2\) units

Correct option is B) 2 + √2

419.

If x < 0 and y > 0 then (- x, y) belongs to which quadrant A) Q1 B) Q2 C) Q3 D) Q4

Answer»

Correct option is (A) Q1

\(\because\) x < 0 and y > 0

\(\Rightarrow\) -x > 0 and y > 0

\(\Rightarrow\) (-x, y) lies in \(Q_1\) quadrant.

Correct option is  A) Q1 

420.

The number of elements in a triangle is A) 3 B) 4 C) 6D) 5

Answer»

Correct option is (C) 6

A triangle has 3 vertices and 3 sides.

\(\therefore\) A triangle has 6 elements.

Correct option is C) 6

421.

A = (4, 2); B = (1, y) and AB = 5 then y = ……………. A) 6 B) 3 C) 9 D) 2

Answer»

Correct option is (A) 6

We have A = (4, 2), B = (1, y) and AB = 5

\(\Rightarrow\sqrt{(1-4)^2+(y-2)^2}=5\)

\(\Rightarrow(-3)^2+(y-2)^2=5^2=25\)        (By squaring both sides)

\(\Rightarrow(y-2)^2=25-9=16^2=4^2\)

\(\Rightarrow y-2=4\;or\;y-2=-4\)

\(\Rightarrow y=4+2=6\;or\;y=-4+2=-2\)

Correct option is A) 6

422.

In the coordinate plane the axes are ……………. to each other. A) parallel B) perpendicular C) either perpendicular or parallel D) neither parallel nor perpendicular

Answer»

Correct option is (B) perpendicular

In the coordinate plane the axes are perpendicular to each other.

Correct option is B) perpendicular

423.

Distance of the point (tanθ, 1) from origin is A) cotθ B) sinθ C) tanθ D) secθ

Answer»

Correct option is (D) sec θ

Distance of point \(A(tan\,\theta,1)\) from origin O(0, 0) is

\(AO=\sqrt{(0-tan\,\theta)^2+(0-1)^2}\)   (By distance formula)

\(=\sqrt{tan^2\,\theta+1}\)

\(=\sqrt{sec^2\,\theta}\)                 \((\because1+tan^2\,\theta=sec^2\,\theta)\)

\(=sec\,\theta\)

Hence, distance of the point \((tan\,\theta,1)\) from origin is \(sec\,\theta.\)

Correct option is D) secθ

424.

A straight line which is parallel to x – y + 1 = 0 is ……………….. A) x – y + k = 0 B) x + y + k = 0 C) ax + by + c = 0D) 2x + 3y + k = 0

Answer»

Correct option is (A) x – y + k = 0

Straight line which is parallel to x – y + 1 = 0 is \(x-y+k=0.\)

Correct option is A) x – y + k = 0

425.

The point at a distance of 4 units from X-axis and 5 units from Y-axis is A) (5, 4) B) (4, 5)C) (5, 6) D) (4, 6)

Answer»

Correct option is (A) (5, 4)

x = Obscissa = Distance of point from Y-axis = 5,

y = Ordinate = Distance of point from X-axis = 4.

Thus, the point is (5, 4).

Correct option is  A) (5, 4)

426.

A = (8, 3), B= (x, 3) and \(\overline{AB}\) = 12 units then x is A) 4 B) 14 C) 8 D) 20

Answer»

Correct option is (D) 20

Given that \(\overline{AB}\) = 12 units where A = (8, 3) and B = (x, 3)

\(\therefore\sqrt{(x-8)^2+(3-3)^2}=12\)        (By distance formula)

\(\Rightarrow(x-8)^2=12^2\)

\(\Rightarrow x-8=12\;or\;x-8=-12\)

\(\Rightarrow x=12+8=20\;or\;x=8-12=-4\)

Correct option is D) 20

427.

The point of intersect of the coordinate axes isA. ordinateB. abscissaC. quadrantD. origin

Answer»

The point where coordinate axes intersect is known as origin O(0, 0)

428.

The line x = 2017 isA) Slope not defined B) Parallel to Y – axis C) A and B D) None

Answer»

Correct option is (C) A and B

The equation of Y-axis is x = 0.

The equation of line parallel to Y-axis is x = c, where c is constant.

\(\therefore\) x = 2017 is a line parallel to Y-axis.

Also, slope of Y-axis is not defined.

\(\therefore\) Slope of line parallel to Y-axis is not defined.

\(\therefore\) Slope of line x = 2017 is not defined.

Hence, option (A) and (B) both are correct.

Correct option is C) A and B

429.

If the distance of a point from X – axis is 8 units and its distance from Y – axis is 3 units then the point is denoted by A) (8, 3) B) (-8, 3) C) (-3, 8) D) (3, 8)

Answer»

Correct option is (D) (3, 8)

y-coordinate of a point = Distance of that point from X-axis

\(\Rightarrow y=8\)                         (Given)

x-coordinate of a point = Distance of that point from Y-axis

\(\Rightarrow x=3\)

\(\therefore\) Point whose distance from X-axis is 8 units and distance from Y-axis is 3 units is denoted by (x, y) = (3, 8).

Correct option is D) (3, 8)

430.

Find the distance between points ‘O’(origin) and ‘A’ (7, 4). 

Answer»

Given: Origin and a point (7, 4). 

Distance of a point (x, y) from the origin is 

\(\sqrt{x^2+y^2}\)

\(\sqrt{7^2+4^2}\) 

\(\sqrt{49+16}\) 

\(\sqrt{65}\) units.

431.

The distance of the point (3, p) from origin is 5 units then p is A) 7 B) 6 C) 5 D) 4

Answer»

Correct option is (D) 4

Given that distance of point A(3, p) from origin O(0, 0) is 5 units.

\(\therefore AO=5\)

\(\Rightarrow AO^2=5^2=25\)

\(\Rightarrow(0-3)^2+(0-p)^2=25\)    \((\because AO=\sqrt{(0-3)^2+(0-p)^2})\)

\(\Rightarrow9+p^2=25\)

\(\Rightarrow p^2=25-9=16\)

\(\Rightarrow p=\pm4\)

\(\Rightarrow p=4\;or\;p=-4\)

Correct option is D) 4

432.

At which point does the straight line y = x + 7 intersect X – axis ? A) (7, 0) B) (0, 7) C) (0, -7) D) (-7, 0)

Answer»

Correct option is (D) (-7, 0)

On X-axis, y-coordinate of any point is zero.

\(\therefore\) Put y = 0 in equation y = x+7 to get the intersecting point with X-axis.

\(x+7=0\)

\(\Rightarrow x=-7\)

Hence, straight line y = x+7 intersect X-axis at point (-7, 0).

Correct option is D) (-7, 0)

433.

The slope of the line parallel to 3x – by + 7 = 0 is 3 then b = ……………….. A) 3 B) 4C) 1 D) 5

Answer»

Correct option is (C) 1

Given line is 3x – by + 7 = 0

\(\Rightarrow by=3x+7\)

\(\Rightarrow y=\frac3bx+\frac7b\)

\(\therefore\) Slope of given line is \(\frac3b\)

\(\therefore\) Slope of line parallel to given line is \(\frac3b.\)

But given that the slope of line parallel to \(3x-by+7=0\) is 3.

\(\therefore\) \(\frac3b\) = 3

\(\Rightarrow b=\frac33=1\)

Correct option is C) 1

434.

Slope of the line joining the points (a, 0) and (0, 5) is A) -bB) a/bC) - b/aD) 1/a

Answer»

Correct option is (C) - b/a

Slope of line joining the points (a, 0) and (0, b) is \(m=\frac{y_2-y_1}{x_2-x_1}\)

\(=\frac{b-0}{0-a}=\frac{b}{-a}=\frac{-b}{a}\)

Correct option is C) - b/a

435.

What is the distance between points (- 4, 0) and (6, 0) on coordinate plane?

Answer»

Given points = (- 4, 0) and (6, 0). 

These two points lie on the X – axis.

∴ Distance between them = [x2 – x1 | = |6 – (-4)]

= 6 + 4 = 10 units.

436.

Where do the following points (-4, 0), (2, 0), (6, 0), (-8, 0) lie in the coordinate axes ? A) First Quadrant B) Y-axisC) X-axis D) Fourth Quadrant

Answer»

Correct option is (C) X-axis

Any point on X-axis has y-coordinate zero.

Since, y-coordinate of all given points (-4, 0), (2, 0), (6, 0) & (-8, 0) is zero.

\(\therefore\) All given points (-4, 0), (2, 0), (6, 0) & (-8, 0) lie on X-axis in the coordinate axes.

Correct option is C) X-axis

437.

The slope of the line perpendicular to the line 2x + y + 4 = 0 is A) -2 B) 2 C) \(\cfrac{1}2\)D)\(-\cfrac{1}2\)

Answer»

Correct option is (C) \(\frac{1}{2}\)

Given line is 2x + y + 4 = 0

\(\Rightarrow y=-2x-4\)

By comparing with y = mx+c, we obtain

\(m=-2\)

Hence, slope of the line 2x + y + 4 = 0 is m = -2.

\(\therefore\) Slope of line perpendicular to line 2x+y+4 = 0

\(=\frac{-1}{\text{slope of line 2x+y+4}}\)

\(=\frac{-1}{-2}=\frac12\)

Hence, the slope of the line perpendicular to the line 2x+y+4 = 0 is \(\frac{1}{2}.\)

Correct option is D)\(\cfrac{1}2\)

438.

Where do these following points lie (-4, 0), (2, 0), (6, 0), (-8, 0) on coordinate plane?

Answer»

Given points are (- 4, 0), (2, 0), (6, 0), (- 8, 0). 

All these points have their y-coordinates = 0

∴ These points lie on X-axis.

439.

Find the slope of the line joining the two given points.A (3, -2), B (-6, -2).

Answer»

Slope = \(\frac{y_2-y_1}{x_2-x_1}\)

\(= \frac{-2 + 2}{-6-3} \)

= 0

440.

Find the slope of the line joining the two given points.A(0, 4), B(4, 0)

Answer»

Slope = \(\frac{y_2-y_1}{x_2-x_1}\)

\(=\frac{0-4}{4-0}\)

\(=\frac{-4}{4}\)

= -1

441.

Find the slope of the line joining the two given points.(a, 0) and (0, b).

Answer»

Slope = \(\frac{y_2-y_1}{x_2-x_1}\)

\(\frac{b-0}{0-a}\)

\(\frac{-b}{a}\)

442.

If the line 4x + 5y = k passing through the origin, then k is A) -1 B) 2 C) 0 D) 3

Answer»

Correct option is (C) 0

Given that line 4x + 5y = k passing through the origin (0, 0).

By putting x = 0 & y = 0 in 4x + 5y = k, we get

\(k=4\times0+5\times0\)

\(=0+0=0\)

Hence, if the line 4x+5y = k passing through the origin, then k = 0.

Correct option is C) 0

443.

The slope of the line joining (2, 1) (3, 6) is ………………….. A) 5 B) 4 C) 3 D) 2

Answer»

Correct option is (A) 5

The slope of line joining points (2, 1) & (3, 6) is

\(m=\frac{y_2-y_1}{x_2-x_1}=\frac{6-1}{3-2}\)

\(=\frac{5}{1}=5\)

Hence, slope of the line joining points (2, 1) & (3, 6) is 5.

Correct option is A) 5

444.

The line passing through the point (0,0) is A) y = 2 B) x = 5 C) y = x D) y = 2x + 3

Answer»

Correct option is (C) y = x

Let the line be y = mx+c   ________________(1)

Since, line is passing through the point (0, 0)

\(\therefore\) By putting x = 0 & y = 0 in equation of line (1), we obtain

\(0=m\times0+c\)

\(\therefore c=0-0=0\)

Put c = 0 in equation of line (1), we get

\(y=mx\)             ________________(2)

Equation (2) represent the family of lines which passes through origin (0, 0).

Since, lines in options (A), (B) & (D) have constant terms.

Thus these lines does not pass through origin (0, 0).

Put m = 1 in equation (2), we get

\(y=x\)

Hence, \(y=x\) is a line passing through the point (0, 0).

Correct option is C) y = x

445.

The distance between the points (3, 2) and (2, 4) is ……………. units. A) √5 B) √6 C) √3 D) √2

Answer»

Correct option is (A) √5

Distance between the points A(3, 2) and B(2, 4) is

\(AB=\sqrt{(2-3)^2+(4-2)^2}\)

\(=\sqrt{(-1)^2+2^2}\)

\(=\sqrt{1+4}\)

\(=\sqrt{5}\) units

Correct option is A) √5

446.

Slope of the line 5x – 6y + 10 = 0 isA) 5/6B) -5/6C) 6/5D) -6/5

Answer»

Correct option is (A) 5/6

Given line is 5x – 6y + 10 = 0

\(\Rightarrow6y=5x+10\)

\(\Rightarrow y=\frac56x+\frac{10}6\)

\(\Rightarrow y=\frac56x+\frac53\)

By comparing with y = mx+c, we get

\(m=\frac{5}{6}\)

Hence, slope of given line is \(\frac{5}{6}.\)

Correct option is A) 5/6

447.

Find the value of a, so that the point (3,a) ies on the line represented by 2x - 3y = 5.

Answer»

The points (3,a) lies on the line 2x - 3y = 5.

If point (3,a) lies on the line 2x - 3y = 5, then 2x - 3y = 5

\(\Rightarrow\) (2 x 3) - (3 x a) = 5

\(\Rightarrow\) 6 - 3a = 5

\(\Rightarrow\) 3a = 1

\(\Rightarrow\) a = \(\frac{1}{3}\)

Hence, the value of a is \(\frac{1}{3}\).

448.

What do you mean by Co-ordinate Geometry?

Answer»

Co-ordinate Geometry is that branch of geometry in which two numbers, called co-ordinates are used to indicate the position of a point in a plane and which make use of algebraic methods in the study of geometric figures.

449.

The mathematician who developed the study of co-ordinate geometry is A) Euler B) John Venn C) Euclid D) Rene Descartes

Answer»

D) Rene Descartes

450.

The area of the triangle formed by the points P(0,1), Q(0,5) and R(3,4) is A. 16 sq. unitsB. 8 sq. unitsC. 4 sq. unitsD. 6 sq. Units

Answer»

If (x1, y1), (x2, y2), (x3, y3) (x1, y1) (x2, y2), (x3, y3) are the vertices of a triangle then its area is given by

Area = [1/2 (x1(y2 −y3)+x2 (y3 −y1 )+x3 (y1 −y2 ))]

Area \(\frac{1}2\)[(0(5-4)+0(4-1)+3(1-5)]

⇒ \([\frac{1}{2}(-12)]\)

⇒ 6 sq. units