Explore topic-wise InterviewSolutions in Current Affairs.

This section includes 7 InterviewSolutions, each offering curated multiple-choice questions to sharpen your Current Affairs knowledge and support exam preparation. Choose a topic below to get started.

1.

Find the cubes of the following numbers (i) 8 (ii) 16(iii) 21 (iv) 30

Answer»
NumberCube Of a Number
i) 883 =  8 × 8 × 8 = 512
ii) 16163 = 16 × 16 × 16 = 4096
iii) 21213 = 21 × 21 × 21 = 9261
v) 30303 = 30 × 30 × 30 = 27000

Cube of the following numbers are:

i) 83= 8 x 8 x 8 = 512

ii) 163= 16 x 16 x 16 = 4096

iii) 213= 21 x 21 x 21= 9261

iv) 303= 30 x 30 x 30= 27000

2.

The cube of 11 is ………………….. A) 1131 B) 1331 C) 1231 D) 1431

Answer»

Correct option is  B) 1331

Correct option is (B) 1331

\(11^3=11^2\times11=121\times11=1331.\)

3.

Is 125 a perfect cube?

Answer»

125 = 5 × 5 × 5 = (5)3

Yes, 125 is a perfect cube. 

[∵ It can be written as product of 3 same numbers]

4.

7 + 9 + 11 = ……………….. A) 33 B) 34C) 35 D) 310

Answer»

Correct option is  A) 33

Correct option is (A) 33

7+9+11 = 27 = \(3^3.\)

5.

How many perfect cube numbers are present between 1 and 100,1 and 500,1 and 1000? 

Answer»

Perfect cube numbers between 1 and 100 = 8, 27, 64 

Perfect cube numbers between 1 and 500 = 8, 27, 64, 125, 216, 343 

Perfect cube numbers between 1 and 1000 = 8, 27, 64, 125, 216, 343, 512, 729

6.

How many perfect cubes are there between 500 and 1000?

Answer»

Perfect cubes between 500 and 1000 = 512 and 729

7.

The units digit of (1997)3A) 10 B) 3 C) 9 D) 4

Answer»

Correct option is  B) 3

Correct option is (B) 3

\(\because\) Unit's digit in 1997 is 7.

\(\therefore\) Unit's digit in \((1997)^3\) is unit's digit in \(7^3=3.\)

\((\because7^3=343\Rightarrow\) unit's digit in \(7^3\) is 3)

8.

Find the cube root of the following numbers through estimation’?(i) 3375 (ii) 5832

Answer»

(i) 3375 

Step 1: Start making groups of three digits starting from the unit place. i.e.;

3375
secondfirst
Group Group 

Step 2: First group is 375. Its units digit is 5. 

∴ The cube root is also ends with 5. 

∴ The units place of the cube root will be 5.

Step 3: Now take the second group,

 i.e., 3 we know that 13 < 33 <23 

∴ The least number is 1. 

∴ The tens digit of a cube root will be 1. 

∴ The required number = 15

 ∴ \(\sqrt[3]{3375}\) = \(\sqrt[3]{15\,\times\,15\,\times15}\) = \(\sqrt[3]{15}{^3}\) = 15

(ii) 5832 

Step 1: Start making groups of three digits starting from the unit place.

5832
secondfirst
groupgroup

Step 2: The units digit of 832 is 2. 

∴ The cube root of the number ends with units digit 8. 

[∵ 8 x 8 x 8 = 512]

Step 3: In the second group i.e., 5 lie between 1 and 6

 i.e., 13 < 5 < 23 

∴ The tens digit of a number will bel. 

∴ The required number is 18.

∴ \(\sqrt[3]{5832}\) = \(\sqrt[3]{18\,\times\,18\,\times18}\) = \(\sqrt[3]{18}{^3}\) = 18

9.

153 = …………………. A) 3375 B) 7375 C) 1375 D) 1525

Answer»

Correct option is  A) 3375

Correct option is (A) 3375

\(15^3=15^2\times15=225\times15=3375.\)

10.

\(\sqrt[3]P\) = 7 , p = ......................A) 416 B) 189 C) 343 D) 143

Answer»

Correct option is  C) 343

Correct option is (C) 343

\(\sqrt[3]p=7\)

\(\Rightarrow p=7^3=343.\)

11.

\(\sqrt[3]x\) = 12 ⇒ x = ……………….A) 1728 B) 1928 C) 1314 D) 1628

Answer»

Correct option is A) 1728

Correct option is (A) 1728

\(\sqrt[3]{x}\) = 12 \(\Rightarrow\) \((x)^{\frac13}=12\)

\(\Rightarrow\) \(x=12^3=12^2\times12\)

\(\Rightarrow\) \(x=144\times12\)

\(\Rightarrow\) x = 1728.

12.

\(\sqrt[3]{64}\) = ...................A) 9 B) 16 C) 10 D) 4

Answer»

Correct option is  D) 4

Correct option is (D) 4

\(\sqrt[3]{64}=\sqrt[3]{4\times4\times4}=\sqrt[3]{4^3}\) \(=(4^3)^\frac13=(4)^{3\times\frac13}=4^1=4.\)

13.

a + b + c = 0 then a3 + b3 + c3 = ………………A) \(\frac{abc}{3}\)B) 3 abc C) ab+c D) \(\frac{ab}{c}\)

Answer»

Correct option is  B) 3 abc

Correct option is (B) 3 abc

Since, \(a^3+b^3+c^3\) - 3ab \(=(a+b+c)(a^2+b^2+c^2-bc-ca-ab)\)

\(\therefore\) If a + b + c = 0, then \(a^3+b^3+c^3\) = 3 abc.

14.

13 + 23 = A) 10 B) 33 C) 32 D) 92

Answer»

Correct option is  C) 32 

Correct option is (C) 32

\(1^3+2^3\) = 1+8 = 9 = \(3^2\).

15.

123 + 13 = ………………. A) 1718 B) 1719 C) 1729 D) 1829

Answer»

Correct option is  C) 1729

Correct option is (C) 1729

\(12^3+1^3\) = 1728+1 = 1729 \((\because12^3=1728)\)

16.

13 + 23 + 33 = ……………… A) 52 B) 62 C) 82 D) 92

Answer»

Correct option is  B) 62 

Correct option is (B) 62

\(1^3+2^3+3^3\) = 1+8+27 = 36 = \(6^2.\)

17.

If y = x3 then ……………….A) x = \(\sqrt[3]{y}\)B) x = √y C) √x = y2 D) None

Answer»

Correct option is   A) x = \(\sqrt[3]{y}\)

18.

Find the digit in units place of each of the following numbers.  (i) 753   (ii) 1233    (iii) 1573    (iv) 1983    (v) 2063

Answer»
NumberCube of a units digitUnits digit
i) 75353= 1255
ii) 123333 = 277
iii) 157373 = 3433
iv) 198383 = 5122
v) 206363 = 2166

19.

63 = ………………… A) 161 B) 216 C) 116 D) 117

Answer»

Correct option is B) 216

20.

Find the two digit number which is a square number and also a cubic number.

Answer»

The two digited square and cubic number is 64 

∴ 64 = 8 x 8 = 82 

\(\sqrt{64}\) = 8 

∴ 64 = 4 x 4 x 4 = 43 

⇒ \(\sqrt[3]{64}\) = 4

21.

Find the cube root of the following numbers through estimation’? (i) 512 (ii) 2197 

Answer»

i) 512

Step 1: Start making groups of three digits starting from the unit place. 

i.e., \(\overline{512}\) First group is 512 

Step 2: First group i.e. 512 will give us the units digit of the cube root. As 512 ends with 2, then its cube root ends with 8 (2 x 2 x 2) So the units place of the cube root will be 8.

Step 3: Now take the second group i.e. 0.Which is 03 < 1 < 23

So the least number is ‘0′. 

∴ Tens digit of a cube root of a number be 0. 

∴ \(\sqrt[3]{512}\) = 08 = 8

(ii) 2197 

Step 1: Start making groups of three digits starting from the unit place.

2197
secondfirst
groupgroup

Step 2: First group i.e., 197 will give us the units digit of the cube root. 

As 197 ends with 7, its cube root ends with 3. ‘

 [∵ 3 x 3 x 3 = 27] 

∴ Its units digit is 7.

Step 3: Now take the second group i.e.,2 

We know that i3 < 2 < 2 

∴ The least number be 1. 

∴ The required number is 13.

∴ \(\sqrt[3]{2197}\) = \(\sqrt[3]{13\,\times\,13\,\times13}\) = \(\sqrt[3]{13}{^3}\) = 13

22.

Test whether the given numbers are perfect cubes or not. (i) 243 (ii) 516 (iii) 729(iv) 8000 (v)2700

Answer»
NumberCube Of a NumberYes / No
i) 2433 × 3 × 3 × 3 × 3 = 35No
ii) 5162 × 2 × 3 × 43No
iii) 7299 × 9 × 9 = 93Yes
iv) 800020 × 20 × 20 = (20)3Yes
v) 2700(30) × (30) × 3No

23.

Is 81 a perfect cube?

Answer»

81 = 3 × 3 × 3 × 3 = 34 

No, 81 is not a perfect cube. 

[∵ 81 can’t be written as product of 3 same numbers.]

24.

The perfect square and cube number of a two digited number is ……………… A) 32B) 91 C) 16 D) 64

Answer»

Correct option is  D) 64

Correct option is (D) 64

\(64=8^2\) and \(64=4^3\)

Thus, 64 is a perfect square and perfect cube number.

Previous Next