

InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
151. |
Form differential equation for `Ax^(2)-By^(2)=0` A)`xyy_(2)+x(y_(1))^(2)-yy_(1)=0` B)`y_(1)=y/x` C)`y_(1)=x/y` D)`y_(1)=xy`A. `xyy_(2)+x(y_(1))^(2)-yy_(1)=0`B. `y_(1)=y/x`C. `y_(1)=x/y`D. `y_(1)=xy` |
Answer» Correct Answer - B | |
152. |
D.E. `yy_(1)+x=a`, where a is a constant, represents a family ofA. circles centred on X-axisB. circles centred on Y-axisC. parabolasD. ellipses |
Answer» Correct Answer - A | |
153. |
`y^(2)=a(b-x)(b+x)` is a solution of the D.E. A)`y_(2)+x(y_(1))^(2)+yy_(1)=0` B)`xyy_(2)+x(y_(1))^(2)-yy_(1)=0` C)`xyy_(2)-x(y_(1))^(2)+yy_(1)=0` D)`yy_(1),y_(2)=x^(2)`A. `y_(2)+x(y_(1))^(2)+yy_(1)=0`B. `xyy_(2)+x(y_(1))^(2)-yy_(1)=0`C. `xyy_(2)-x(y_(1))^(2)+yy_(1)=0`D. `yy_(1),y_(2)=x^(2)` |
Answer» Correct Answer - B | |
154. |
The order of the differential equation whosegeneral solution is given by `y=(C_1+C_2)cos(x+C_3)-C_4e^(x+4_5),`where `C_1,C_2,C_3,C_4,C_5`, are arbitrary constants, is(a)5(b) 4 (c)3 (d) 2A. (a) 5B. (b) 4C. (c) 3D. (d) 2 |
Answer» Correct Answer - (c) Given, `y=(c_(1)+c_(2))cos (x+c_(3))-c_(4)e^(x+c_(5)) …. (i)` ` rArr y=(c_(1)+c_(2))cos (x+c_(3))-c_(4)e^(x)cdot e^(c_(5)) ` Now, let `c_(1)+c_(2)=A,c_(3)=B,c_(4)e^(c_(5))=c` `rArr y=A cos (x+B)-ce^(x) …(ii)` On differentiating w.r.t.x, we get `dy/dx=-A sin (A+B)-ce^(x) …(iii)` Again, on differentiating w.r.t.x, we get `(d^(2)y)/dx^(2)=-Acos (x+B)-ce^(x) … (iv)` `rArr (d^(2)y)/dx^(2)=-y-2ce^(x) … (v)` `rArr (d^(2)y)/dx^(2)+y=-2ce^(x)` Again, on differentiating w.r.t.x, we get ` (d^(3)y)/dx^(2)+dy/dx=-2ce^(x) ..(vi)` `rArr (d^(3)y)/dx^(2)+dy/dx=(d^(2)y)/dx^(2)+y [from Eq. (v)]` which is a differential equation of order 3. |
|
155. |
The order of the differential equation, whose general solution is `y = C_1 e^x + C_2 e^(2x) + C_3 e^(3x) + C_4 e^(x-c_5)` , where `C_1, C_2, C_3, C_4, C_5` are arbitrary constants, isA. 2B. 3C. 4D. 5 |
Answer» Correct Answer - B | |
156. |
The order of the differential equation whosegeneral solution is given by `y=(C_1+C_2)cos(x+C_3)-C_4e^(x+4_5),`where `C_1,C_2,C_3,C_4,C_5`, are arbitrary constants, is(a)5(b) 4 (c)3 (d) 2A. 5B. 4C. 3D. 2 |
Answer» Correct Answer - C | |
157. |
Integrating factor of differential equation `cosx(dy)/(dx)+ysinx=1`is(a)`( b ) (c)cosx (d)`(e)(b) `( f ) (g)tanx (h)`(i)(c)`( d ) (e)secx (f)`(g)(d) `( h ) (i)sinx (j)`(k)A. `sin x`B. `sec x`C. `tan x`D. `cos x` |
Answer» Correct Answer - B We have, `(dy)/(dx)+(tanx)y=secx` `therefore" I.F. "=e^(int tan x dx)=e^(log secx)=sec x` |
|
158. |
Integrating factor of differential equation `cosx(dy)/(dx)+ysinx=1`is(a)`( b ) (c)cosx (d)`(e)(b) `( f ) (g)tanx (h)`(i)(c)`( d ) (e)secx (f)`(g)(d) `( h ) (i)sinx (j)`(k)A. `cosx`B. `tanx`C. `secx`D. `sinx` |
Answer» Correct Answer - C `cosx(dy)/(dx)+ysinx=1` or `(dy)/(dx)+y(sinx)/(cosx)=secx` `therefore intPdx=int(sinx)/(cosx)dx` `=-logcosx` `=log secx` `therefore` I.F. `=e^(intPdx)=e^(log secx)=secx` |
|
159. |
Find the general solution of the differential equations:`(dx)/(dy)+secx y=tanx(0lt=x |
Answer» `(dy)/(dx)+y sec x=tanx` Here, `P=secx` and `Q= tanx` `:. I.F.=e^(intPdx)=e^(intsecx)` `=e^(log(secx+tanx))` `=secx+tanx` and general solution : `y(secx+tanx)=inttanx(secx+tanx)dx+c` `=int(secx+tanx+sec^(2)x-1)dx+c` ` impliesy(secx+tanx)=secx+tanx-1+c` |
|
160. |
The solution of the differential equation `(xcoty + log cosx)dy +(logsiny-ytanx) dx=0` isA. `(sinx)^(y)(cosy)^(x)=c`B. `(siny)^(x)(cosx)^(y)=c`C. `(sinx)^(x)(cosy)^(y)=c`D. None of these |
Answer» Correct Answer - B `(xcoty+logcosx)dy+(log siny-ytanx)dx=0` or `intd(xlogsiny)+intd(ylogcosx)=0` or `xlogsiny+ylogcosx=logc` or `(siny)^(x)(cosx)^(y)=c` |
|
161. |
Solution of the differential equation `cosx dy= y(sinx -y)dx , 0 lt x lt pi/2` (A) `secx=(tanx+c)y` (B) `ysecx=tanx+c` (C) `ytanx=secx+c` (D) `tanx=(secx+c)y` |
Answer» `dy/dx = (y(sinx - y))/cosx = y tan x - y^2 secx` `1/y^2 dy/dx = 1/y tan x - secx` let `1/y = t` `-1/y^2 dy/dt = dt/dx` now, `-dt/dx = t tan x - secx` `- dt/dx - t tan x = -sec x` `dt/dx + t tan x = sec x ` `IF = e^(int tan x dx)= e^(ln |secx|)= sec x` `t(IF) = int (IF) sec x ` `t * sec x = int(sec^2 x)` `t sec x = int sec^2 x = tan x+ c` `1/y sec x = tan x + c` `secx = y tanx + cy` option 1 is correct |
|
162. |
STATEMENT-1 : If the length of subtangent and subnormal at point (x, y) on y = f(x) are 9 and 4 then x is equal to + 6. and STATEMENT-2 : Product of subtangent and subnormal is square of the ordinate of the point.A. Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.B. Statement-1 is true, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is FalseD. Statement-1 is False, Statement-2 is True |
Answer» Correct Answer - D | |
163. |
The solution of differential equations |
Answer» Correct Answer - A(s), B(q), C(p), D(r) | |
164. |
Match the following |
Answer» Correct Answer - A(p, q, t), B(r), C(q, t), D(q, s) | |
165. |
Solve `[xsin^2(y/x)-y]dx+x dy=0; y=pi/4`when `x=1.` |
Answer» Correct Answer - `cot(y/x)=log_(e)|ex|` `[xsin^(2)(y/x)-y]dx+xdy=0` or `(dy)/(dx)=v+(xdv)/(dx)` Therefore, given equation reduces to `v+x(dv)/(dx)=v-sin^(2)v` or `x(dv)/(dx) = -sin^(2)v` or `"cosec "^(2)vdv=-(dx)/(x)` Integrating both sides, we get `-cotv=-log|x|-logC` or `cot(y/x)=log|Cx|`...............(2) Now, `y=pi/4` at `x=1`. `therefore cot(pi/4) = log|C|` or `1=log C` or C=e Substituting C=e in equation (2), we get `cot(y/x)=log|ex|` This is the required solution of the given differential equation |
|
166. |
Match the following |
Answer» Correct Answer - A(q), B(p), C(s), D(s) | |
167. |
If `xsin((y)/(x))dy = (y sin((y)/(x))-x)dx`and y(1) `= (pi)/(2)` then the value of `cos((y)/(e^(7)))` is __________. |
Answer» Correct Answer - 7 | |
168. |
` (x-y^(2)x)dx-(y-x^(2)y)dy=0`A. `1+y^(2)=c(1=x^(2))`B. `1-y^(2)=c(1+x^(2))`C. `1+y^(2)=c(1-x^(2))`D. `1-y^(2)=c(1-x^(2))` |
Answer» Correct Answer - D | |
169. |
`(y^(2))/(x^(2))(dx)/(dy)=(y+1)/(x+1)`A. `y-x-log((x)/(y))=c`B. `(1)/(y)-(1)/(x)+log((x)/(y))=c`C. `y-x-logy+logx=c`D. `(y+y^(-1))-(x+x^(-1))=c` |
Answer» Correct Answer - B | |
170. |
`(dy)/(dx)+(x y+y)/(x y+x)=0`A. `x+y+log((x)/(y))=c`B. `x-y+log((x)/(y))=c`C. `y-x+log((y)/(x))=c`D. `xlog(y+1)=ylog(x+1)+c` |
Answer» Correct Answer - C | |
171. |
`(x^(2)-1)/(y-1)=xy(dy)/(dx)`A. `3x^(2)-6logx=2y^(3)-3y^(2)+c`B. `3x^(2)+6logx=3y^(3)-2y^(2)+c`C. `3x^(3)+6logx=y^(3)-y^(2)+c`D. `3x^(3)+6logx=2y^(3)-3y^(2)+c` |
Answer» Correct Answer - A | |
172. |
`y^(3)dx-4dy=x^(2)dy`A. `tan^(-1)((x)/(2))=(1)/(y^(2))+c`B. `2tan^(-1)x=y^(-2)+c`C. `2tan^(-1)y=x^(-2)+c`D. `y^(4)-16y=x^(3)+c` |
Answer» Correct Answer - A | |
173. |
Given two curves y = f(x) passing through (0, 1) and `y = int_(-oo)^(x) f(t) dt` passing through (0, 1/n). The tangents drawn to both the curves at the points with equal abscissas intersect on the x-axis, the curve is given byA. `y = e^(nx)`B. y = nxC. y = nlnxD. `y = nx^(2)` |
Answer» Correct Answer - `f(x) = e^(nx)` | |
174. |
Solve`(d^2y)/(dx^2)=((dy)/(dx))^2` |
Answer» `(d^(2)y)/(dx^(2))=((dy)/(dx))^(2)` or `d/(dx)(dy)/(dx) = ((dy)/(dx))^(2)` or `(d(dy)/(dx))/((dy)/(dx))=(dy)/(dx)dx` or `int ((d(dy)/(dx)))/((dy)/(dx))=intdy` `therefore log(dy)/(dx)=logy+logC_(1)` `therefore (dy)/(dx)=C_(1)y` `therefore (dy)/(y)=C_(1)dx` `therefore int(dy)/(y) = C_(1)intdx` `therefore logy=C_(1)x+k` `therefore y=e^(C_(1)x+k)=C_(2)e^(C_(1)x)` |
|
175. |
Solve the differential equation `x y(dx)/(y dx)=(1+y^2)/(1+x^2)(1+x+x^2)` |
Answer» We have `(ydy)/(1+y^(2))=(1+x+x^(2))/(x(1+x^(2))`dx Integrating both sides, `int(ydy)/(1+y^(2))=int(1/x+1/(1+x^(2)))dx` `therefore 1/2log_(e)(1+y^(2))=log_(e)x+tan^(-1)x+log_(e)C` `log_(e)sqrt(1+y^(2))/(cx)=tan^(-1)x` `rArr sqrt(1+y^(2))=cxe^(tan^(-1)x)` |
|
176. |
Solve `(dy)/(dx) = (x+2y - 3)/(2x + y - 3)` |
Answer» Here `a_(1) = 1, b_(1) = 2 " " :. (a_(1))/(b_(1)) = (1)/(2)` `a_(2) = 2, b_(2) = 1 " " :. (a_(2))/(b_(2)) = 2` Now, `(a_(1))/(b_(1)) != (a_(2))/(b_(2))` Thus case - I applies, we have setting, `{:(x=u+h),(y=v+k):}}` `(dv)/(du) = ((u+2v) + (h+2k-3))/((2u + v) + (2h + k-3))0` Choose h, k such that `{:(h+2k-3=0),(2h + k - 3 =0):}}` The solution is h = 1, k = 1 `rArr (dv)/(du) = (u+2v)/(2u + v)` Set `v = tu, rArr (dv)/(du) = t + (dt)/(du)` Our equation reduces to `t + u(dt)/(du) = (u+2tu)/(2u + tu) = (1+2t)/(2+t)` `rArr u(dt)/(du) = (1+2t)/(2+t) - t = (1+2t-2t-t^(2))/(2+t) = (1-t^(2))/(2+t)` `rArr (2+t)/(1-t^(2)) dt = (du)/(2)` `rArr (2)/(1-t^(2))dt+(1)/(2).2(t)/(1-t^(2)) dt = (du)/(u)` On integrating, we get `ln|(1+t)/(1-t)| - (1)/(2)ln|1-t^(2)| = ln|u|+ ln|k|`, k being the constant of integration. `rArr ln|((1+(v)/(u))/(1-(v)/(u)))|-(1)/(2)ln(1-(v^(2))/(u^(2)))| = ln(uk)|` `rArr |((u+v)/(u-v))| - ln|(sqrt(u^(2)-v^(2)))/(u)| = ln|(uk)|` `rArr ln|((u+v)/(u-v).(u)/(sqrt(u^(2)-v^(2))))| = ln|uk|` `rArr (usqrt(u+v))/((u-v)^((3)/(2))) = +- uk` `rArr k(u-v)^((3)/(2)) = +-sqrt(u+v)` `rArr k(x-1-y+1)^((3)/(2)) = sqrt(x-1+y-1)` `rArr k(x-y)^((3)/(2)) = sqrt(x+y-2)` `:. k^(2)(x-y)^(3) = (x+y-2)` `rArr (x-y)^(3) = lambda(x+y-2), lambda` being another constant. |
|
177. |
Solve `(x^(2) + y^(2))(dy)/(dx) = 2xy` |
Answer» `(dy)/(dx) = (2xy)/(x^(2) + y^(2))` Set `y = vx`, so that `(dy)/(dx) = v + x(dv)/(dx)` `rArr x(dv)/(dx) = (2v)/(1+v^(2)) - v = (2v - v - v^(3))/(1+ v^(2)) = (v - v^(3))/(1 + v^(2))` `rArr (dx)/(x) = (1 + v^(2))/(v(1-v^(2))) dv` `rArr (dx)/(x) = ((1)/(v) + (1)/(1-v) - (1)/(1+v))dv` (Using partial fractions) Integrating `ln|x| = ln|v| - ln |1-v| - ln|1+v| + ln|k|`, `rArr |x| = |(v)/((1-v)(1+v))||k|, k gt 0` `rArr |x| = |((y)/(x))/(1-(y^(2))/(x^(2)))k|` `rArr |x| = |(xy)/(x^(2)-y^(2))k|` `rArr = ky = +- (x^(2) - y^(2))` where k is the constant of integration. |
|
178. |
Solve `(dy)/(dx) = sec (x+y)` |
Answer» Setting x+y-t, we have no differentiation w.r.t. x `1+(dy)/(dx) = (dt)/(dx)` Our equation not reads `(dt)/(dx) - 1 = sec t` `rArr (dt)/(dx) = 1+ sec t` `rArr (dt)/(1+ sec t) = dx` `rArr (cos t dt)/(1+cos t) = dx` `rArr ((1+ cos t)-1)/(1+ cos t) dt = dx` `rArr dt - (dt)/(1+ cos t) = dx` `rArr dt - (dt)/(2 cos^(2).(t)/(2)) = dx` `rArr dt-(1)/(2)sec^(2).(t)/(2) dt = dx` Integrating, we get, `t- tan.(t)/(2) = x + k` `rArr x+y - tan.(x+y)/(2) =x+k` `:. y - tan.(x+y)/(2) = k`, k being the constant of integration. |
|
179. |
Solve `(x^(2) + 2xy + y^(2) + 1)(dy)/(dx) = 2(x+y)` |
Answer» Observe that `x^(2) + 2xy + y^(2) = (x+y)^(2)` The equation becomes, `{(x+y)^(2)+1}(dy)/(dx) = 2(x+y)` Set x+ y = t, so that `1+(dy)/(dx) = (dt)/(dx)` (on differentiation w.r.t. x) Now, `(t^(2)+1)((dt)/(dx) - 1) = 2t` `rArr (dt)/(dx) = (2t)/(t^(2) + 1) +1 = (t^(2) + 2t +1)/(t^(2)+1) = (t^(2) + 2t + 1)/(t^(2) + 1) = ((t + 1)^(2))/(t^(2)+1)` `rArr (t^(2) + 1)/((t + 1)^(2))dt = dx` `rArr ((t+1)^(2)-2(t+1)+2)/((t+1)^(2)) dt = dx` `rArr dt - (2)/(t+1)dt + 2(dt)/((1+t)^(2)) = dx` Integrating, we obtain, `t-2ln |t+1| - (2)/(t-1) = x + k` `rArr x+y - 2ln|x+y+1| - (1)/(x+y+1) = x+k` `:. y- 2ln|x+y+1| - (2)/(x+y+1) = k`, k being the constant of integration |
|
180. |
Find the equation of a curve passing through (1,1) and whose slope of tangent at a point (x, y) is `-(x)/(y)`. |
Answer» `because` The slope of the tangent to the curve at a point (x, y) is `(dy)/(dx)` `(dy)/(dx) = -(x)/(y)` `rArr xdx + ydy = 0` Integrating both sides we get `(x^(2))/(2)+(y^(2))/(2) = c` `because` The curve passes through (1,1) `:. (1)/(2) + (1)/(2) = c` `rArr c = 1` `:.` The equation of the curve is `x^(2) + y^(2) = 2` |
|
181. |
Solve the following differential equation:`sqrt(1+x^2+y^2+x^2 y^2) +x y(dy)/(dx)=0` |
Answer» Note that `f(x,y) = sqrt(1+x^(2)+y^(2)+x^(2)y^(2)) = sqrt((1+x^(2))(1+y^(2)))` `sqrt(1+x^(2)) . Sqrt(1+y^(2)) = g(x)h(y)` Thus, f(x,y) can be written as a product of two functions, one of x alone and the othr of y alone. `sqrt(1+x^(2)+y^(2)+x^(2)y^(2))+ xy(dy)/(dx) = 0` `rArr sqrt(1+ x^(2))sqrt(1+y^(2)) + xy (dy)/(dx) = 0` `rArr (sqrt(1+x^(2)))/(x) dx + (y)/(sqrt(1+y^(2)))dy = 0` Integration yields `int (1+x^(2))/(xsqrt(1+x^(2)))dx+(1)/(2)int (d(1+y^(2)))/(sqrt(1+y^(2))) = k` ` rArr int (1)/(xsqrt(1+ x^(2)))dx+ int (x)/(sqrt(1+x^(2))) dx + (1)/(2) xx 2sqrt(1+y^(2)) = k` `rArr int (-(1)/(2)dt)/(((1)/(2))sqrt(1+((1)/(2))^(2)))+ sqrt(1+ x^(2)) + sqrt(1+y^(2)) = k` [setting x = 1/t in the first integral]. `rArr - int (dt)/(sqrt(1+ t^(2))) + sqrt(1+x^(2)) + sqrt(1+y^(2)) = k` `rarr -ln|t + sqrt(1+t^(2))| + sqrt(1+ x^(2)) + sqrt(1+ y^(2)) = k` `rArr -ln |(1)/(x)+sqrt(1+(1)/(x^(2)))| + sqrt(1+x^(2)) + sqrt(1+y^(2)) = k` `rArr sqrt(1+ x^(2)) - ln|(x+sqrt(1+x^(2)))/(x)| + sqrt(1+ y^(2)) = k` which is the general solution of the differential equation. |
|
182. |
Find the equation of the curve passing through (1, 1) and the slope of the tangent to curve at a point (x, y) is equal to the twice the sum of the abscissa and the ordinate. |
Answer» `because` The slope of the tangent at (x, y) is `(dy)/(dx)` `:. (dy)/(dx) = 2(x+y)` ...(1) Let x + y = t `rArr 1 + (dy)/(dx) = (dt)/(dx)` `:.` From equation (1) `(dt)/(dx) - 1 = 2t` `rArr (dt)/(2t + 1) = dx` Integrating both sides, we get `(1)/(2) ln (2t + 1) = x + ln c_(1)` `rArr ln(2t + 1) = 2x + ln c`, where `ln c = 2ln c_(1)` `rArr 2t + 1 = ce^(2x)` or `2(x + y) + 1 = ce^(2x)` `because` The curve passes through (1, 1) `:. 2(1+1) + 1= ce^(2)` `rArr c = 5e^(-2)` `:.` The equation of the curve is `2(x+y) + 1 = 5e^(2(x-1))` |
|
183. |
The solution of the equation `(2+x)dy-ydx=0` represents a curve passing through a fixed point P, then the area of equilateral triangle with P as one vertex and `x+y=0` as its one side, isA. `2sqrt3`B. `sqrt3`C. `(2)/(sqrt3)`D. `(4)/(sqrt3)` |
Answer» Correct Answer - C We have, `(2+x)dy-ydx=0rArr(1)/(y)dx-(1)/(2+x)dx=0` On integrating, we obtain `logy-log(x+2)=logC rArr y=C(x+2)` Clearly, it represents a curve passing through a fixed point `P(-2,0)`. The altitude of the equilateral triangle having one vertex at `P(-2,0)` and opposite side `x+y=0` is `P=|(-2+0)/(sqrt(1+1))|=sqrt2` So, its area is `(p^(2))/(sqrt3)=(2)/(sqrt3)` sq. units |
|
184. |
If `y=f(x)` is the solution of equation `ydx+dy=-e^(x)y^(2)`dy, f(0)=1 and area bounded by the curve `y=f(x), y=e^(x)` and x=1 is A, thenA. curve y=f(x) is passing through `(-2,e)`.B. Curve `y=f(x)` is passing through `(1,1//e)`C. curve `y=f(x)` is passing through `(1,1//3)`D. `A=e+2/sqrt(e )-3` |
Answer» Correct Answer - A::D `ydx+dy=-e^(x)y^(2)dy` `rArr (e^(-x)ydx+e^(-x)dy)/(y^(2))=-dy` `rArr d(e^(-x)/y)=dy` `rArr e^(-x)=y^(2)+cy` `therefore f(0)=1, therefore c=0` `rArr e^(-x)=y^(2)` `rArr y=e^(-x//2)` `rArr A = int_(0)^(1)(e^(x)-e^(-x//2))dx=e+2/sqrt(e)-3` |
|
185. |
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is `y = 2(e^(x) - x-1)`. |
Answer» We have , `(dy)/(dx) = y+2x` `rArr (dy)/(dx) - y = 2x` `IF = e^(-int dx) = e^(-x)` Multiplying the equation by IF and integrating `y xx e^(-x) = int 2xe^(-x) dx + k`, k being the constant of integration. `= 2[x int e^(x) dx - int 1.(-e^(x))dx] + k`, using integration by parts `= 2-xe^(-x) - 2e^(x) + k` ...(i) As curve (i) passes through (0, 0) 0 = 0 - 2 + k `:. k = 2` Thus the curve is `ye^(-x) = -2xe^(-x) - 2e^(-x) + 2` `:. y = -2x - 2 + 2e^(x)` `:. y = 2(e^(x) - x-1)` |
|
186. |
In which of the following differential equationdegree is not defined?(a) `( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q)+3( r ) (s)(( t ) (u) (v)(( w ) dy)/( x )(( y ) dx)( z ) (aa) (bb))^(( c c )2( d d ))( e e )=xlog( f f )(( g g ) (hh) d^(( i i )2( j j ))( k k ) y)/( l l )(( m m ) d (nn) x^(( o o )2( p p ))( q q ))( r r ) (ss) (tt)`(uu)(vv)`( w w ) (xx) (yy)(( z z ) (aaa) d^(( b b b )2( c c c ))( d d d ) y)/( e e e )(( f f f ) d (ggg) x^(( h h h )2( i i i ))( j j j ))( k k k ) (lll)+( m m m ) (nnn)(( o o o ) (ppp) (qqq)(( r r r ) dy)/( s s s )(( t t t ) dx)( u u u ) (vvv) (www))^(( x x x )2( y y y ))( z z z )=xsin( a a a a )(( b b b b ) (cccc) d^(( d d d d )2( e e e e ))( f f f f ) y)/( g g g g )(( h h h h ) d (iiii) x^(( j j j j )2( k k k k ))( l l l l ))( m m m m ) (nnnn) (oooo)`(pppp)(qqqq)`( r r r r ) (ssss) x=sin(( t t t t ) (uuuu) (vvvv)(( w w w w ) dy)/( x x x x )(( y y y y ) dx)( z z z z ) (aaaaa)-2y (bbbbb)),|x| |
Answer» Correct Answer - A::B `x=sin((dy)/(dx)-2y) rArr (dy)/(dx) -2y=sin^(-1)x` `x-2y=log(dy)/(dx) rArr (dy)/(dx) = e^(x-2y)` |
|
187. |
The solution of `(x d d+y dy)/(x dy-y dx)=sqrt((1-x^2-y^2)/(x^2+y^2))`is(a) `( b ) (c)sqrt(( d ) (e) (f) x^(( g )2( h ))( i )+( j ) y^(( k )2( l ))( m ) (n))( o )=sin{( p ) (q)tan^(( r ) (s)-1( t ))( u )(( v ) (w) (x) y/( y ) x (z) (aa) (bb))+C}( c c )`(dd)(ee)`( f f ) (gg)sqrt(( h h ) (ii) (jj) x^(( k k )2( l l ))( m m )+( n n ) y^(( o o )2( p p ))( q q ) (rr))( s s )=cos{( t t ) (uu)tan^(( v v ) (ww)-1( x x ))( y y )(( z z ) (aaa) (bbb) y/( c c c ) x (ddd) (eee) (fff))+C}( g g g )`(hhh)(iii) `( j j j ) (kkk)sqrt(( l l l ) (mmm) (nnn) x^(( o o o )2( p p p ))( q q q )+( r r r ) y^(( s s s )2( t t t ))( u u u ) (vvv))( w w w )=(tan{s i (xxx) n^(( y y y ) (zzz)-1( a a a a ))( b b b b )(( c c c c ) (dddd) (eeee) y/( f f f f ) x (gggg) (hhhh) (iiii))+C}( j j j j )`(kkkk)(llll) `( m m m m ) (nnnn) y+xtan(( o o o o ) (pppp) c+( q q q q ) (rrrr)sin^(( s s s s ) (tttt)-1( u u u u ))( v v v v )sqrt(( w w w w ) (xxxx) (yyyy) x^(( z z z z )2( a a a a a ))( b b b b b )+( c c c c c ) y^(( d d d d d )2( e e e e e ))( f f f f f ) (ggggg))( h h h h h ) (iiiii))( j j j j j )`(kkkkk)A. `sqrt(x^(2)+y^(2))= sin{(tan^(-1)y//x)+C}`B. `sqrt(x^(2)+y^(2))=cos{(tan^(-1)y//x)+C}`C. `sqrt(x^(2)+y^(2))=(tan(sin^(-1)y//x)+C)`D. `y=xtan(c+sin^(-1)sqrt(x^(2)+y))` |
Answer» Correct Answer - A::D The differential equation can be rewritten as `(xdx+ydy)/sqrt(1-(x^(2)+y^(2)))=(xdy-ydx)/sqrt(x^(2)+y^(2))` Since `dtan^(-1)(y//x)=(xdy-ydx)/(x^(2)+y^(2))` and `d(x^(2)+y^(2))=2(xdx+ydy)` We have `(1/2d(x^(2)+y^(2))/(sqrt(x^(2)+y^(2))sqrt(1-(x^(2)+y^(2)))))=(xdy-ydx)/(x^(2)+y^(2))=d{(tan^(-1)(y//x))}` Put `x^(2)+y^(2)=r^(2)` in the LHS. Then `(tdt)/(tsqrt(1-t^(2)))=d{tan^(-1)(y//x)}` Integrating both sides, we get `sin^(-1)t=tan^(-1)(y//x)+c` i.e., `sin^(-1)sqrt((x^(2)+y^(2)))=tan^(-1)(y//x)+c` i.e., `sin^(-1)sqrt((x^(2)+y^(2)))=tan^(-1)(y//x)+c` |
|
188. |
Find the curves for which the length of normal is equal to the radius vector.A. circlesB. rectangular hyperbolaC. ellipsesD. straight lines |
Answer» Correct Answer - A::B We have length of the normal = radius vector or `ysqrt(1+((dy)/(dx))^(2)) = sqrt((x^(2)+y^(2))` or `y^(2)(1+((dy)/(dx))^(2)) = x^(2)+y^(2)` or `x=+-y(dy)/(dx)` i.e., `x=y(dy)/(dx)` or `x=-y(dy)/(dx)` i.e., `x=y(dy)/(dx)` or `x=-y(dy)/(dx)` i.e., `xdx-ydy=0` or `xdx+ydy=0` Clearly, `x^(2)-y^(2)=c_(1)` represents a rectangular hyperbola and `x^(2)+y^(2)=c_(2)` represents circles. |
|
189. |
Find the curves for which the length of normal is equal to the radius vector. |
Answer» The length of normal ` |y| sqrt(y+((dy)/(dx))^(2))` From the hypothesis of the problem `|y| sqrt(1+((dy)/(dx))^(2))` = radius vector `= r = sqrt(x^(2) + y^(2))` `rArr y^(2){1+ ((dy)/(dx))^(2)} = r^(2) = x^(2) + y^(2)` `rArr y^(2) + y^(2)((dy)/(dx))^(2) = x^(2) + y^(2) " " rArr y^(2)((dy)/(dx))^(2) = x^(2)` `rArr +- y(dy)/(dx) = x " " rArr +- ydy = xdx` `rArr +- y^(2) = x^(2) - k^(2) " " :. x^(2) +- y^(2) = k^(2)` This represents a circle or equilateral hyperbola according as we take + or - sign. |
|
190. |
If `y=Asin mx+B cos mx`, then prove that`(d^2y)/(dx^2)+m^2y=0` |
Answer» `y = Asinmx+Bcosmx` `dy/dx = Amcosmx-Bmsinmx` `(d^2y)/dx^2 = -Am^2sinmx-Bm^2cosmx` `(d^2y)/dx^2 = -m^2(Asinmx+Bcosmx)` `(d^2y)/dx^2 = -m^2(y)` `(d^2y)/dx^2 + m^2(y) = 0` |
|
191. |
Solve `(dy)/(dx) + x sin 2y = x^(3) cos^(2) y` |
Answer» We have on dividing by `cos^(2)y` `sec^(2)y(dy)/(dx) + ((2sin y cos y)/(cos^(2) y))x = x^(3)` `rArr sec^(2)y(dy)/(dx) + (2 tan y) x = x^(3)` Set `tan y = v`, so that `sec^(2) y (dy)/(dx) = (dv)/(dx)` Our equation becomes, `(dv)/(dx) + 2vx = x^(3)` which is linear in v `IF = e^(int 2x dx) = e^(x^(2))` multiplying the equation by If and integrating `ve^(x^(2)) = int e^(x^(2)). x^(3)dx + k`, k n being the constant of integration `= int e^(x^(2)). x^(2).xdx + k` (set `t = x^(2)`) `= (1)/(2) int e^(t). t dt + k` `= (1)/(2)e^(t).(t-1) + k` `rArr - tan y e^(x^(2)) = (1)/(2)e^(x^(2)) (x^(2)-1) + k` `rArr 2 tan y e^(x^(2)) (x^(2)+1) + lambda, lambda` being another constant. `:. 2 tan y = (x^(2) - 1) + lambda e^(-x^(2))`. |
|
192. |
Find the differential equation of all lines in the `xy` - plane. |
Answer» Equation of a line in `xy` plane, `y = mx+c` `:. dy/dx = m` `=> (d^2y)/dx^2 = 0` ,which is the required equation. |
|
193. |
Solve `(dy)/(dx) sqrt(1+x+y) =x+y-1` |
Answer» Putting `sqrt(1+x+y)=v`, we have `x+y-1=v^(2)-2` or `1+(dy)/(dx)=2v(dv)/(dx)` Then, the given transforms to `(2v(dv)/(dx)-1)v=v^(2)-2` or `(dv)/(dx)=(v^(2)+v-2)/(2v^(2))` or `int(2v^(2))/(v^(2)+v-2)dv=intdx` or `2int[1+1/(3(v-1))-4/(3(v+2))]dv=intdx` or `2[v+1/3log|v-1|-4/3log|v+2|]=x+c` where `v=sqrt(1+x+y)` |
|
194. |
Solve : `(dy)/(dx) - (2y)/(x) = y^(4)` |
Answer» On dividing the equation vy `y^(4)`, we have `(1)/(y^(4)) (dy)/(dx) - ((2)/(y^(3)).(1)/(x)) = 1` Set `(1)/(y^(3)) = v`, so that, `-(3)/(y^(4))(dy)/(dx) = (dv)/(dx)` Our equation reads, `-(1)/(3)(dv)/(dx) - (2v)/(x) = 1` `rArr (dv)/(dx) + (6)/(x) v = -3` which is a linear differential equation in v. `IF = e^(6int (dx)/(x)) = e^(6 ln x) = x^(6)` Multiplying the equation by IF and integrating, we get `vx^(6) = -3int x^(6) dx + k`, k being a constant of integration. `= -3 (x^(7))/(7) + k` `rArr (1)/(y^(3)) x^(6) = -(3)/(7) x^(7) + k` `rArr (3)/(7)x^(7) + (x^(6))/(y^(3)) = k` `:. x^(6)(3x+(7)/(y^(3))) = lambda, lambda` being another constant. |
|
195. |
Solve `(dy)/(dx)=(x+y)^2` |
Answer» `(dy)/(dx) = (x+y)^(2)`………………(1) Here direct variables separation is not possible. So, we choose substitution method. Let x+y=v. `therefore 1+(dy)/(dx)=(dv)/(dx)` So,equation (1), reduces to `(dv)/(dx)=v^(2)+1` or `int(dv)/(v^(2)+1)=intdx` `therefore tan^(-1)v=x+c` `rArr x+y=tan(x+c)`, which is required solution. |
|
196. |
Solve `log(dy)/(dx)=4x-2y-2`, given that `y=1`when `x=1.` |
Answer» `log_(e)(dy)/(dx)=4x-2y-2` `rArr (dy)/(dx)=e^(4x-2y-2)` `rArr e^(2y+2)dy=e^(4x)dx` Integrating both sides, `inte^(2y+2)dy=e^(4x)dx` `rArr e^(2y_2)/(2)=e^(4x)/(4)+C` Putting x=1 and y=1, we get `e^(4)/2=e^(4)/4+C` or `c=e^(4)/4` So, particular solution is `(e^(2y)+2)/(2) = (e^(4x)+e^(4))/(4)` or `2(e^(2y+2))=e^(4x)+e^(4)` |
|
197. |
Solve the following differential equation: `(1+y^2)dx=(tan^(-1)y-x)dy` |
Answer» Rewrite the equation as, `(dx)/(dy) = (tan^(-1)y)/(1+y^(2)) - (x)/(1+y^(2))` `rArr (dx)/(dy) + (1)/(1+y^(2)) x = (tan^(-1)y)/(1+y^(2))` This is linear in x, with from being `(dx)/(dy) + Rx = S` IF `= e^(int Rdy) = e^(int(dy)/(1+y^(2))) = e^(tan^(-1)y)` The solution is `x. IF = int S. IF dy + k`, (k being the constant of integration) `rArr x. e^(tan^(-1)y) = int e^(tan^(-1) y).(tan^(-1) y)/(1+ y^(2)) = dy` ...(i) Put `tan^(-1)y = t rArr (dy)/(1+y^(2))= dt` `:. int e^(tan^(-1)y)(tan^(-1)y)/(1+y^(2))dy = int t e^(1) dt = t int e^(t) dt - int e^(t) 1 dt` `= te^(t) - e^(t) = (t-1)e^(t)`, (using Integration by parts) From (i), `x.e^(tan^(-1)y) = (tan^(-1)y-1)e^(tan^(-1)y) + k` `:. x = ke^(-tan^(-1)y) + tan^(-1) y- 1` |
|
198. |
Solve the differential equation: `(1+x^2) dy/dx + y = tan^-1 x` |
Answer» `(dy)/(dx)+y/(1+x^2)=tan^(-1)x/(1+x^2)` P=`1/(1+x^2)` Q=`(tan^(-1)x)/(1+x^2)` `y*IF=int(IF)*Q dx` `y*e^(tan^(-1)x)=int(e^(tan^(-1)x))/(1+x^2) dx` let`tan^(-1)x=t` `y*e^t=(t-1)e^t+c` `y=(tan^(-1)x-1)+ce^(-tan^(-1)x)`. |
|
199. |
The differential equation for `y=Acos alphax +B sin alphax`, where A and B are arbitary constant isA. `(d^(2)y)/(dx^(2))-alpha .^(2)y=0`B. `(d^(2)y)/(dx^(2))+alpha .^(2)y=0`C. `(d^(2)y)/(dx^(2))+alphay=0`D. `(d^(2)y)/(dx^(2))-alphay=0` |
Answer» Given, `y=A cos alpha+B sin alpha` `Rightarrow (dy)/(dx)=-alpha A sin alpha x+alphaBcos x` Again, differentiating both sides, w.r.t. x, we get `Rightarrow(d^(2)y)/(dx^(2))=-Aalpha^(2)(Acos alphax+Bsin alphax)` `Rightarrow(d^(2)y)/(dx^(2))=-alpha^(2)y` `Rightarrow(d^(2)y)/(dx^(2))+alpha^(2)y=0` |
|
200. |
If `y=e^(-x)(A cos x + B sin x)` then y is a situation ofA. `(d^(2)y)/(dx^(2))+2(dy)/(dx)=0`B. `(d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0`C. `(d^(2)y)/(dx^(2))+2(dy)/(dx)+2y=0`D. `(d^(2)y)/(dx^(2))+2y=0` |
Answer» Given that, `y=e^(-x)(Acosx=Bsinx)` On differentiating both sides w.r.t., x we get `" "(dy)/(dx)=-e^(-x)(Acosx+Bcosx)+e^(-x)(-Asinx+Bcosx)` `" "(dy)/(dx)=-y+e^(-x)(-Asinx+Bcosx)` Again, differentiating both sides w.r.t., x, we get `" "(d^(2)y)/(dx^(2))=(-dy)/(dx)+e^(-x)(-cosx-Bsinx)-e^(-x)(-Asin+Bcosx)` `rArr" "(d^(2)y)/(dx^(2))=-(dy)/(dx)-y-[(dy)/(dx)+y]` `rArr" "(d^(2)y)/(dx^(2))=-2(dy)/(dx)-2y` `rArr" "(d^(2)y)/(dx^(2))+2(dy)/(dx)+2y=0` |
|