Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

Factories: x2 – y2 – 2y – 1

Answer»

Given,

x2 – y2 – 2y – 1 

= x2 – (y2 + 2y + 1) 

By using the formula a2 – b2 = (a + b)(a – b) 

We get, 

x2 – y2 – 2y – 1 = x2 – (y2 + 2y + 1) 

= (x)2 – (y + 1)2 

={x + (y +1)}{x – (y + 1)} 

= (x + y + 1)(x – y – 1)

102.

Factories: x2 – ax – bx + ab

Answer»

x2 – ax – bx + ab 

Let’s arrange the terms in a suitable form; 

x2 – ax – bx + ab 

= x2 – bx – ax + ab 

= (x2 – bx) – (ax – ab) 

= x(x – b) – a(x – b) 

= (x – b)(x –a) 

So we get, 

x2 – ax – bx + ab = (x – b)(x –a)

103.

Factories: ab2 – bc2 – ab + c2

Answer»

ab2 – bc2 – ab + c2 

Let’s first arrange the terms in a suitable form; 

ab2 – bc2 – ab + c2 

= ab2 – ab – bc2 + c2 

= (ab2 – ab) – (bc2 - c2

= ab(b – 1) – c2(b - 1) 

= (b – 1)(ab – c2

So we get, 

ab2 – bc2 – ab + c2 = (b – 1)(ab – c2)

104.

Factories: x2 – xz + xy – yz

Answer»

Let’s first arrange the terms in a suitable form; 

x2 – xz + xy – yz 

= x2 + xy – xz – yz 

= (x2 + xy) – (xz + yz) 

= x(x + y) – z(x + y) 

= (x + y)(x – z) 

So we get, 

x2 – xz + xy – yz = (x + y)(x – z)

105.

x2 – xz + xy – yz=? A. (x – z) (x + z) B. (x – y) (x – z) C. (x + y) (x – z) D. (x – z) (z – x)

Answer»

= x2 – xz + xy – yz 

= x(x – z) +y(x – z) (taking x and y as common resp.) 

= (x + y)(x – z).

106.

Factories: x3 – 64x

Answer»

We have, 

x3 – 64x 

= x(x2 – 64) 

By using the formula a2 – b2 = (a + b)(a – b) 

We get, 

x3 – 64x = x(x2 – 64) 

= x{(x)2 – (8)2

= x(x + 8)(x – 8)

107.

Factories: 3x5 – 48x3

Answer»

We have, 

3x5 – 48x3 

= 3x3(x2 – 16) 

By using the formula a2 – b2 = (a + b)(a – b) 

We get, 

3x5 – 48x3 = 3x3(x2 – 16) 

= 3x3{(x)2 – (4)2

= 3x3(x + 4)(x – 4)

108.

Factories: 16x5 – 144x3

Answer»

We have, 

16x5 – 144x3 

= 3x3(x2 – 9) 

By using the formula a2 – b2 = (a + b)(a – b) 

We get, 

16x5 – 144x3 = 3x3(x2 – 9) 

= 16x3{(x)2 – (3)2

= 16x3(x + 3)(x – 3)

109.

Factorize each of the following expressions:a4 - 16(b - c)4

Answer»

(a2)2 – [4 (b – c)2]
= [a2 + 4 (b – c)2] [a2 – 4 (b – c)2]
= [a2 + 4 (b – c)2] [(a + 2b – 2c) (a – 2b + 2c)]

110.

Factorize each of the following expressions:16(a - b)3 - 24(a - b)2

Answer»

8 (a – b)2 [2 (a – b) – 3]
= 8 (a – b)2 [2a – 2b – 3]

111.

Factorize each of the following expressions:ab – a – b + 1

Answer»

a (b – 1) – 1 (b – 1)
= (a – 1) (b – 1)

112.

Factorize each of the following expressions:ab(x2 + 1) - x(a2 + b2)

Answer»

abx2 + ab + xa2 + xb2
= ax (bx + a) + b (bx + a)
= (ax + b) (bx + a)

113.

Factorize each of the following expressions:a2x2 + (ax2 + 1)x + a

Answer»

a2x2 + ax3 + x + a
= x (ax2 + 1) + a (ax2 + 1)
= (x + a) (ax2 + 1)

114.

Factorize each of the following algebraic expressions:a2 - b2 + 2bc - c2

Answer»

a2 – (b2 – 2bc + c2)

= a2 – (b – c)2

= (a + b – c) (a – b + c)

115.

Factorize each of the following algebraic expressions:a2(x+y)+b2(x+y)+c2(x+y)

Answer»

(a2 + b2 + c2) (x + y) [Therefore, taking (x + y) common in each term]

116.

Factorize each of the following expressions:256x5 - 81x

Answer»

x (256x4 – 81)
= x [(16x2)2 – 92]
= x (16x + 9) (16x – 9)

117.

Factorize each of the following expressions:75a3b2 - 108ab4

Answer»

3ab2 (25a2 – 36b2)
= 3ab2 [(5a)2 – (6b)2]
= 3ab2 (5a + 6b) (5a – 6b)

118.

Factorize each of the following expressions:(x + y)2 - (a - b)2

Answer»

[(x + y) + (a – b)] [(x + y) – (a – b)]
= (x + y + a – b) (x + y – a + b)

119.

Factorize each of the following expressions:\(\frac{50}{x^2}-\frac{2x^2}{81}\)

Answer»

\(2(\frac{25}{x\times x}-\frac{x\times x}{81})\)

\(2[(\frac{5}{x})^2-(\frac{x}{9})^2]\)

\(2[(\frac{5}{x}+\frac{x}{9})(\frac{5}{x}-\frac{x}{9})\)

120.

Factorize each of the following expressions:x5 - 16x3

Answer»

x3 (x2 – 16)
= x3 (x2 – 42)
= x3 (x + 4) (x – 4)

121.

Factorize each of the following expressions:\(\frac{1}{16}x^2y^2 - \frac{4}{49}y^2z^2\)

Answer»

\((\frac{1}{4}xy)^2 - (\frac{2}{7}yz)^2\)

 = \((\frac{xy}{4}+\frac{2yz}{7})(\frac{xy}{4}-\frac{2yz}{7})\)

\(y^2(\frac{x}{4}+\frac{2}{7}z)(\frac{x}{4}-\frac{2}{7}z)\)

122.

Factorize each of the following expressions:16x2 - 25y2

Answer»

(4x)2 – (5y)2
= (4x + 5y) (4x – 5y)

123.

Factorize each of the following expressions:27x2 - 12y2

Answer»

Consider 27x2 - 12y2,Taking 3 common we get,3 [(3x)2 – (2y)2]

As we know a2 - b2 = (a-b) (a+b)

= 3 (3x + 2y) (3x – 2y)

124.

Factorize each of the following expressions:144a2 - 289b2

Answer»

(12a)2 – (17b)2
= (12a + 17b) (12a – 17b)

125.

Factorize each of the following expressions:12m2 - 27

Answer»

3 (4m2 – 9)
= 3 [(2m)2 – 32]
= 3 (2m + 3) (2m – 3)

126.

Factorize each of the following expressions:125x2 - 45y2

Answer»

5 (25x2 – 9y2)
= 5 [(5x)2 – (3y)2]
= 5 (5x + 3y) (5x – 3y)

127.

Factorize the following:2l2mn - 3lm2n + 4lmn2

Answer»

Greatest common factor of the two terms namely 21lmn, - 3lm2n, 4lmn2 of expression 21lmn - 3lm2n + 4lmn2 is lm

21lmn - 3lm2n + 4lmn2 = lm(21 - 3m + 4n)

128.

ab – mn + an – bm =? A. (a-b)(m-n) B. (a-m)(b+n) C. (a-n)(m+b) D. (m-a)(n-b)

Answer»

= ab – mn + an – bm = ab + an – mn – bm 

= a(b + n) – m(n + b) 

= (a – m)(b + n).

129.

pq2 + q(p – 1) – 1 =? A. (pq + 1) (q - 1) B. p(q + 1) (q - 1) C. q(p - 1) (q + 1) D. (pq - 1) (q + 1)

Answer»

pq2 + q(p – 1) – 1 = pq2 + qp – q – 1 

= pq(q + 1) – 1(q + 1) 

= (pq – 1)(q + 1)

130.

Factorize: x2 + 13x + 40

Answer»

Given, 

x2 + 13x + 40 

Now first find the numbers whose

Sum = 13 and 

Product = 40 

Required numbers are 8 and 5, 

So we get; 

x2 + 13x + 40 

= x2 + 8x + 5x + 40 

= x(x + 8) + 5(x + 8) 

= (x + 8)(x + 5)

131.

x3 – x =? A. x(x2 – x) B. x(x – x2) C. x(1 + x) (1 – x) D. x(x + 1) (1 – x)

Answer»

x3 – x = x(x2 – 1) (taking x as common from whole) 

= x(x – 1)(x + 1) \(\because\) a2 – b2 = (a – b)(a + b)

132.

1 – 2ab – (a2 + b2) =? A. (1 + a - b) (1 + a + b) B. (1 + a + b) (1 - a + b) C. (1 + a + b) (1 - a - b) D. (1 + a - b) (1 - a + b)

Answer»

1 – 2ab – (a2 + b2) = 1 – 2ab – a2 – b2 

= 1 – (2ab + a2 + b2

= 1 – (a + b)2 

= (1 – a – b)(1 + a + b) \(\because\) a2 – b2 = (a – b)(a + b)

133.

40 + 3x – x2=? A. (5 + x) (x - 8) B. (5 - x) (8 + x) C. (5 + x) (8 - x) D. (5 - x) (8 - x)

Answer»

40 + 3x – x2 

Factorizing the equation and taking 8 and – x as common, 

= 40 + 8x – 3x – x2 

= 8(5 + x) – x(5 + x) 

= (8 – x)(5 + x).

134.

2x2 + 5x + 3=? A. (x + 3) (2x + 1) B. (x + 1) (2x + 3) C. (2x + 5) (x - 3) D. none of these

Answer»

2x2 + 5x + 3 

Factorizing the equation and taking 2x and 3 as common, 

= 2x 2 + 2x + 3x + 3 

= 2x(x +1) + 3(x + 1) 

= (2x + 3)(x + 1).

135.

x2 + 6x + 8=? A. (x + 3) (x + 5) B. x + 3) (x + 4) C. (x + 2) (x + 4) D. (x + 1) (x + 8)

Answer»

x2 + 6x + 8 

Factorizing the equation and taking x and 2 as common, 

= x2 + 4x + 2x + 8 

= x(x + 4) +2(x + 4) 

= (x + 2)(x + 4).

136.

Factorize: q2 – 10q + 21

Answer»

Given, 

q2 – 10q + 21 

Now first find the numbers whose

Sum = - 10 and 

Product = 21 

Required numbers are 7 and 3, 

So we get; 

q2 – 10q + 21 

= q2 – 7q – 3q + 21 

= q(q – 7) – 3(q – 7) 

= (q – 7)(q – 3)

137.

y2 + 2y – 3=? A. (y - 1) (y + 3) B. (y + 1) (y - 3) C. (y - 1) (y - 3) D. (y + 2) (y - 3)

Answer»

y2 + 2y – 3 

Factorizing the equation and taking y and – 1 as common, 

= y2 + 3y – y – 3 

= y(y + 3) – 1(y + 3) 

= (y + 3)(y – 1).

138.

a2+bc+ab+ac =? A. (a + b) (a + c) B. (a + b) (b + c) C. (b + c) (c + a) D. a(a + b + c)

Answer»

a2+bc+ab+ac = a2+ab + bc + ac 

Rearranging the terms and taking a and c as common respectively. 

= a(a + b) + c(a + b) 

= (a + c)(a + b).

139.

2 – 50x2=? A. 2(1 – 5x)2 B. 2(1 + 5x)2 C. (2 – 5x) (2 + 5x) D. 2(1 – 5x) (1 + 5x)

Answer»

2 – 50x2= 2(1 – 25x2) (taking 2 as common from whole) 

= 2(1 – 5x)(1 + 5x) a2 – b2 = (a – b)(a + b)

140.

x2 + 4x – 21=? A. (x - 7) (x + 3) B. (x + 7) (x - 3) C. (x - 7) (x - 3) D. (x + 7) (x + 3)

Answer»

x2 + 4x – 21 

Factorizing the equation and taking x and – 3 as common, 

= x2 + 7x – 3x – 21 

= x(x + 7) – 3(x + 7) 

= (x – 3)(x + 7).

141.

x3 – 144x =? A. x(x – 12)2 B. x(x + 12)2 C. x(x – 12) (x + 12) D. none of these

Answer»

X3 – 144x = x(x2 – 144) (taking x as common from whole) 

= x(x – 12)(x + 12) a2 – b2 = (a – b)(a + b)

142.

(2x – 32x3) =? A. 2(x – 4) (x + 4) B. 2x(1 – 2x)2 C. 2x(1 + 2x)2 D. 2(1 – 4x) (1 + 4x)

Answer»

(2x – 32x3) = 2x(1 – 16x2) (taking 2x as common from whole) 

= 2x(1 – 4x)(1 + 4x) a2 – b2 = (a – b)(a + b)

143.

Factorize each of the following expressions:x8 - 1

Answer»

(x4)2–(1)2
= (x4 + 1) (x4 – 1)

144.

Factorize each of the following expressions:64 - (a + 1)2

Answer»

82 – (a + 1)2
= [8 + (a + 1)] [8 – (a + 1)]
= (a + 9) (7 – a)

145.

Factorize each of the following expressions:36l2 - (m + n)2

Answer»

(6l)2 – (m + n)2
= (6l + m + n) (6l – m – n)

146.

Factorize each of the following expressions:\(a^4 - \frac{1}{b^4}\)

Answer»

(a2)2 – (\(\frac{1}{b\times b}\))2
= (a2 + \(\frac{1}{b\times b}\)) (a2 - \(\frac{1}{b\times b}\))

147.

Factorize each of the following expressions:25x4y4 - 1

Answer»

(5x2y2)2 – (1)2
= (5x2y2 – 1) (5x2y2 + 1)

148.

Find the greatest common factor (GCF/HCF) of the following polynomials:12ax2, 6a2x3 and 2a3x5

Answer»

The numerical coefficients of given numerical are 12, 6, 2

Greatest common factor of 12, 6, 2 is 2.

Common literals appearing in given numerical are a and x

Smallest power of x in three monomials = 2

Smallest power of a in three monomials = 1

Monomials of common literals with smallest power= ax2

Hence, the greatest common factor = 2ax2

149.

3 + 23y – 8y2=? A. (1 - 8y) (3 + y) B. (1 + 8y) (3 - y) C. (1 - 8y) (y - 3) D. (8y - 1) (y + 3)

Answer»

3 + 23y – 8y2 

Factorizing the equation and taking 3 and – y as common, 

= 3 + 24y – y – 8y2 

= 3(1 + 8y) – y(1 + 8y) 

= (3 – y)(1 + 8y).

150.

6a2 – 13a + 6=? A. (2a + 3) (3a – 2) B. (2a - 3) (3a + 2) C. (3a - 2) (2a – 3) D. (3a + 1) (2a – 3)

Answer»

6a2 – 13a + 6 

Factorizing the equation and taking 3a and – 2 as common, 

= 6a2 – 9a – 4a+ 6 

= 3a(2a – 3) – 2(2a – 3) 

= (3a – 2)(2a – 3).