InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Evaluate:(i) \(\sqrt[3]{4^3\times6^3}\)(ii) \(\sqrt[3]{8\times17\times17\times17}\)(iii) \(\sqrt[3]{700\times2\times49\times5}\)(iv) \(125\sqrt[3]{a^3}\) - \(\sqrt[3]{125a^6}\) |
|
Answer» (i) \(\sqrt[3]{4^3\times6^3}\) We have, = \(\sqrt[3]{4^3\times6^3}\) = \(\sqrt[3]{4^3}\times\) \(\sqrt[3]{6^3}\) = \(4\times6\) = 24. (ii) \(\sqrt[3]{8\times17\times17\times17}\) We have, = \(\sqrt[3]{8\times17\times17\times17}\) = \(\sqrt[3]{8\times}\) \(\sqrt[3]{17^3}\) = \(\sqrt[3]{2^3}\times\) \(\sqrt[3]{17^3}\) = \(2\times17 \) = 34. (iii) \(\sqrt[3]{700\times2\times49\times5}\) We have, = \(\sqrt[3]{700\times2\times49\times5}\) Getting prime factors of numbers, = \(\sqrt[3]{700\times2\times49\times5}\) = \(\sqrt[3]{2\times2\times2\times5\times5\times7\times7\times5}\) = \(\sqrt[3]{2^3\times5^3\times7^3}\) = \(\sqrt[3]{2^3}\times\)\(\sqrt[3]{5^3}\times\) \(\sqrt[3]{7^3}\) = 2 × 5 × 7 = 70. (iv) \(125\sqrt[3]{a^3}\) - \(\sqrt[3]{125a^6}\) We have, = \(125\sqrt[3]{a^6}\) - \(\sqrt[3]{125a^6}\) = \(125\sqrt[3]{(a^2) ^3}\) - \(\sqrt[3]{5^3(a^2)^3}\) = \(125a^2\) - \(\sqrt[3]{5^3(a^2)^3}\) = \(125a^2\) - \(\sqrt[3]{5^3}\times\sqrt[3]{(a^2)^3}\) = \(125a^2\) - \(5a^2\) = \(120a^2. \) |
|