Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Evaluate:(i) \(\sqrt[3]{4^3\times6^3}\)(ii) \(\sqrt[3]{8\times17\times17\times17}\)(iii) \(\sqrt[3]{700\times2\times49\times5}\)(iv) \(125\sqrt[3]{a^3}\) - \(\sqrt[3]{125a^6}\)

Answer»

(i) \(\sqrt[3]{4^3\times6^3}\)

We have,

\(\sqrt[3]{4^3\times6^3}\)

\(\sqrt[3]{4^3}\times\) \(\sqrt[3]{6^3}\)

\(4\times6\)

= 24.

(ii) \(\sqrt[3]{8\times17\times17\times17}\)

We have,

\(\sqrt[3]{8\times17\times17\times17}\)

\(\sqrt[3]{8\times}\) \(\sqrt[3]{17^3}\)

\(\sqrt[3]{2^3}\times\) \(\sqrt[3]{17^3}\)

\(2\times17 \)

= 34.

(iii) \(\sqrt[3]{700\times2\times49\times5}\)

We have,

\(\sqrt[3]{700\times2\times49\times5}\)

Getting prime factors of numbers,

\(\sqrt[3]{700\times2\times49\times5}\)

\(\sqrt[3]{2\times2\times2\times5\times5\times7\times7\times5}\)

\(\sqrt[3]{2^3\times5^3\times7^3}\)

\(\sqrt[3]{2^3}\times\)\(\sqrt[3]{5^3}\times\) \(\sqrt[3]{7^3}\)

= 2 × 5 × 7 = 70.

(iv) \(125\sqrt[3]{a^3}\) - \(\sqrt[3]{125a^6}\)

We have,

\(125\sqrt[3]{a^6}\) - \(\sqrt[3]{125a^6}\)

\(125\sqrt[3]{(a^2) ^3}\) - \(\sqrt[3]{5^3(a^2)^3}\)

\(125a^2\) - \(\sqrt[3]{5^3(a^2)^3}\)

\(125a^2\) - \(\sqrt[3]{5^3}\times\sqrt[3]{(a^2)^3}\)

\(125a^2\) - \(5a^2\)

\(120a^2. \)