InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
How do it get my question |
|
Answer» r cos2θ = a ∵ In polar form, radius of curvature = ρ = \(\frac{(r^2+(\frac{dr}{dθ})^2)^{3/2}}{r^2+2(\frac{dr}{dθ})^2-r\frac{d^2r}{dθ^2}}\) .........(1) ∵ r cos2θ = a ⇒ r = a sec2θ ⇒ \(\frac{dr}{dθ}\) = 2a sec2θ tan2θ ⇒ \(\frac{d^2r}{dθ^2}\) = 4a sec2θ tan22θ + 4a sec32θ = 4a sec2θ (sec22θ + tan22θ) From (1), ∴ ρ = \(\frac{(a^2sec^22θ + 4a^2sec^22θ\,tan^22θ)^{3/2}}{a^2sec^22θ+8a^2\,sec^22θ\,tan^22θ-4a^2\,sec^22θ(sec^22θ+tan^22θ)}\) = \(\frac{a^3\,sec^32θ(1+4\,tan^22θ)^{3/2}}{a^2\,sec^22θ(1+8\,tan^22θ-4sec^22θ-4\,tan^22θ)}\) = \(\frac{a\,sec2θ(1+4\,tan^22θ)^{3/2}}{1+4\,(tan^22θ-sec^22θ)}\) = \(\frac{a\,sec2θ\,(1+4\,tan^22θ)^{3/2}}{1-4}\) (∵ sec2θ - tan2θ = 1) = \(-\frac{1}{3}\)a sec2θ (1+4 tan22θ)3/2 |
|