Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Find the square of 10.01

Answer»

10.012 = (10 + 0.01)2

= 102 + 2 × 10 × 0.01 + 0.012

= 100 + 0.2 + 0.0001 = 100.2001

2.

Find the square of 99. 99

Answer»

99.992 = (100 – 0.01)2

= 1002 – 2 × 100 × 0.01 + 0.012

10000 – 2 + 0.0001 = 9998.0001

3.

Find the squares of the given numbers by using simple calculations.(i) 52(ii) 105(iii) \(20\frac{1}{2}\)(iv) 10.2

Answer»

(i) 522 = (50 + 2)2

= 502 + 2 × 50 × 2 + 22

= 2500 + 200 + 4

= 2704

(ii) 1052 = (100 + 5)2

= 1002 + 2 × 100 × 5 + 52

= 10000 + 1000 + 25

= 11025

(iii) \((20\frac{1}{2})^2\) = \((20+\frac{1}{2})^2\)

= 202 + 2 × 20 × \(\frac{1}{2}\) + \((\frac{1}{2})^2\)

= 400 + 20 + \(\frac{1}{4}\)

= 420\(\frac{1}{4}\)

(iv) (10.2)2 = (10 + 0.2)2

= 102 + 2 × 10 × 0.2 + (0.2)2

= 100 + 4 + 0.04

= 104.04

4.

Observe the following operations1 × 4 = (2 × 3) – 2 2 × 5 = (3 × 4) – 2 3 × 6 = (4 × 5) – 2 4 × 7 = (5 × 6) – 2(i) Write next operations of two rows in the same order.(ii) Among the 4 nearest natural numbers. Find the relation- ship between the product of first and last and those in the middle.(iii) Write the principle in algebraic expression and explain the reason

Answer»

(i) 5 × 8 = (6 × 7) – 2

6 × 9 = (7 × 8) – 2

(ii) The product of first and last numbers = 2 subtracted from the product of two middle numbers.

(iii) The numbers are n, n + 1, n + 2, (n + 3) n (n + 3) = n2 + 3n

(n + 1) (n + 2) = n2 + 3n + 2

difference = 2

5.

Explain on the basis of algebra that any natural number which is not a multiple of 3 when divided by 3, we get the remainder as 1.

Answer»

We can write the natural numbers which are not the multiple of 3 as.

3n + 1, 3n + 2

(3n + 1)2 = (3n)2 + 6n + 1

= 9n2 + 6n + 1

= 3 (3n2 + 2n) + 1

When divided by 3, remainder is 1

(3n + 2)2 = 9n2 + 6n + 4

= 9n2 + 6n + 3 + 1

= 3 (3n2 + 2n + 1) + 1

When divided by 3, remainder is 1

6.

Find the squares of the numbers given below.(i) 49(ii) 98(iii) 7\(\frac{3}{4}\)(iv) 9.25

Answer»

(i) 492 = (50 – 1)2

= 502 – 2 × 50 × 1 + 1

= 2500 – 100 + 1

= 2401

(ii) 982 = (100 – 2)2

= 1002 – 2 × 100 × 2 + 22

= 10000 – 400 + 4

= 9604

(iii) (7\(\frac{3}{4}\))2 = (8 – \(\frac{1}{4}\))2

= 82 – 2 × 8 × \(\frac{1}{4}\) + (\(\frac{1}{4}\))2

= 64 – 4 + \(\frac{1}{16}\)

= 60\(\frac{1}{16}\)

(iv) 9.252

= (10 - 75)2

= 102 – 2 × 10 × .75 + (.75)2

= 100 – 15 + 0.5625

= 85. 5625

7.

Prove that, the squares of numbers which end in 3 end in 9.

Answer»

We can write the numbers end in 3 as 10x + 3 is (10x + 3)2

= (10x)2 + 60x + 9; So it ends in 9.

8.

Observe the following(1/2)2 + (1 (1/2)2) = 2(1/2), 2 = 2 x 12Explain the common principle in these using algebra?

Answer»

(x – \(\frac{1}{2}\))2 + (x + \(\frac{1}{2}\))2

x2 – x + \(\frac{1}{4}\) + x2 + x + \(\frac{1}{4}\)

2x2\(\frac{1}{2}\)

9.

Find the difference in the given questions.(i) (125 × 75) – (126 × 74) (ii) (124 × 76) – (126 × 74) (iii) (224 × 176) – (226 × 174) (iv) (10.3 × 9.7) – (10.7 × 9.3) (v) (11.3 × 10.7) – (11.7 × 11.3)

Answer»

(i) (125 × 75) – (126 × 74)

(100 + 25) (100 – 25) – (100 + 26) (100 – 26)

(1002 – 252) – (1002 – 262)

= 262 – 252

= (26 + 25) (26 – 25)

= 51

(ii) (124 × 76) – (126 × 74)

(100 + 24) (100 – 24) – (100 + 26) (100 – 26)

(1002 – 242) – (1002 – 26)2

= 262 – 242 

= (26 + 24) (26 – 24) 

= 50 × 2 

= 100 

(iii) (224 × 176) – (226 × 174) 

(200 + 24) (200 – 24) – (200 + 26) (200 – 26) 

(2002 – 242) – (2002 – 262

= 262 – 242 

= (26 + 24) (26 – 24) 

= 50 × 2 

= 100 

(iv) (10.3 × 9.7) – (10.7 × 9.3)

(10 + 0.3) (10 – 0.3) – (10 + 0.7) (10 – 0.7)

(102 – 0.32) – (102 – 0.72).

= 0.72 – 0.32

= (0.7 + 0.3) (0.7 – 0.3)

= 1 × 4 = 4

(v) (11.3 × 10.7) – (11.7 × 11.3)

(11 + 0.3) (11 – 0.3) – (11 + 0.7) (11 – 0.7)

(112 – 0.32) – (112 – 0.72)

= 0.72 – 0.32

= (0.7 + 0.3) (0.7 – 0.3)

= 1 × 0.4 = 0.4