InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
Find the integrals of the functions x sec-2 x |
|
Answer» ∫xsec-2x = x tan x -∫tan x + dx = x tan x + log |cos x| +C |
|
| 52. |
Find the integrals of the functions x sin x |
|
Answer» ∫ x sin x . dx = x(-cosx) + ∫1x cos xdx = – x cosx + sinx + C |
|
| 53. |
Find the integrals of the functions x2ex |
|
Answer» ∫ x2ex .dx = x2ex -∫2x.ex dx = x2ex -2(xex -1 . ex) = x2ex – 2x ex + 2ex +C = ex (x2 – 2x + 2) + C |
|
| 54. |
Consider the integral I = \(\int \frac{xsin^{-1}x}{\sqrt{1-x^2}}dx\)?What substitution can be given for simplifying the above integral? Express I in terms of the above substitution.Evaluate I |
|
Answer» 1. Substitute sin-1 x = t. 2. We have, sin-1 x = t ⇒ x = sint \(\frac{1}{\sqrt{1-x^2}}dx = dt\) ∴ I = ∫t sin t dt. 3. I = ∫t sin t dt = t.(-cost) -∫(-cost)dt = -t cost + sint + c |
|
| 55. |
Evaluate as limit of sum \(\int_2^3\frac{1}{x}dx\) |
|
Answer» \(\int_2^3\frac{1}{x}dx\) =\(\int_2^3logx\) = log3 - log2 = log(\(\frac{3}{2}\)) |
|
| 56. |
∫ f (x→ -a,a)(x) dx = 0 if f is an _______ function. |
|
Answer» Answer is Odd |
|