1.

Consider the integral I = \(\int \frac{xsin^{-1}x}{\sqrt{1-x^2}}dx\)?What substitution can be given for simplifying the above integral? Express I in terms of the above substitution.Evaluate I

Answer»

1. Substitute sin-1 x = t.

2. We have, sin-1 x = t ⇒ x = sint
Differentiating w.r.t. x; we get,

\(\frac{1}{\sqrt{1-x^2}}dx = dt\)

∴ I = ∫t sin t dt.

3. I = ∫t sin t dt = t.(-cost) -∫(-cost)dt = -t cost + sint + c
= -sin-1 x. cos (sin-1 x) + sin(sin-1 x) + c
x – sin-1 x.cos(sin-1 x) + c.



Discussion

No Comment Found