InterviewSolution
Saved Bookmarks
| 1. |
Integrate 1+Tanx tan(x+theta) dx |
|
Answer» ∫ \(\frac{1+tan\,x\,.\,tan(x+\theta)}{[tan(x+\theta)-tan\,x]}\) (tan(x+θ) - tan x)dx = ∫ \(\frac1{tan\,\theta}\) [tan(x+θ) - tan x] . dx = \(\frac1{tan\,\theta}\) ∫ tan(x+θ)dx - ∫ tan x . dx = \(\frac1{tan\,\theta}\) [-log cos(x+θ)1] + [log |cos x|] + c = \(\frac1{tan\,\theta}\) log |\(\frac{cos\,x}{cos(x+\theta)}\)| + c = cot θ log |\(\frac{cos\,x}{cos(x+\theta)}\)| + c. |
|