1.

Evaluate `int_0^(pi/4)(sqrt(tanx)+sqrt(cotx))dx`

Answer» `I = int (sqrt(sin x/cos x) + sqrt(cos x/sinx) ) dx`
`= int( sinx + cosx)/(sqrtcosx sqrtsinx) dx`
`= int(sin x + cos x)/(sqrt(cos x sin x))dx`
now , `sin x + cosx `
integral is `- cosx + sinx`
now, doing `(sin x - cos x)^2`
`= sin^2x + cos^2 x - 2 sinx cos x`
`(sin x -cos x)^2 = 1- 2 sinxcosx`
`2sinxcos x = 1-(sinx - cosx)^2`
`sqrt(sinx cosx) = sqrt((1- (sinx-cosx)^2)/2)`
putting it in the equation, we get
`= sqrt2 int_0 ^(pi/4) (sinx + cos x)/sqrt(1 - (sinx - cosx)^2)dx`
let `sinx - cosx = t`
`(cos x + sinx)dx = dt`
`x=0 ; t= sin0-cos 0 = -1`
`x = pi/4 ; t= 0`
now, `sqrt2 int_-1^0 dt/sqrt(1-t^2)`
`= sqrt2 [ sin^-1t]_-1^0`
`= sqrt2 [ sin^-1 0 - sin^-1(-1)] `
`= sqrt2 [ 0 - (-pi/2)]`
`= sqrt2 [xx pi/2 = pi xx sqrt2 /2`
`= pi/sqrt2`
Answer


Discussion

No Comment Found