Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

67001.

the following exppessions.6p 12q2.De- 42U 7a 14a10 a- 15b +20

Answer»

Find the area of ​​a triangle whose two sides are 18 cm and 10 cm and the circumference is 42 cm

67002.

Write the following cubes in the expanded form:(i) (3a + 4b)3 (ii) (5p - 3q)

Answer»
67003.

7 x + 9 x + x - 16 x = 0

Answer»

7x+9x+x-16x=016x+x-16x=0so x=0

67004.

7. Write the following cubes in the expanded form:(i) (3a + 46)(6) (5p - 3q)3

Answer»
67005.

14?463351

Answer»
67006.

: 4 x ^ { 2 } + 9 y ^ { 2 } + 16 z ^ { 2 } + 12 x y - 24 y z - 16 x z

Answer»
67007.

4 x ^ { 2 } + 9 y ^ { 2 } + 16 z ^ { 2 } + 12 x y - 24 y z - 16 x z

Answer»
67008.

x+8=24 \quad(x=3, x=15, x=16, x=0)

Answer»

x + 8 = 24 x = 24 - 8 = 16

67009.

।।।If the quadratic equation (a? - b)x2 + (b2 - cx + c2-a2 = 0 has equal roots, then which of thefollowing is true :दि । सात समीकरण (a-b2) + (b’ - ४ + C -a = 0 के मूल बराबर है, तब निम्न में से कौनसाकिया रात्य होगा।(2) b(1) b* + c* = a+ ८ = 2a2(4) a = b + 2c(3) b -2 = 2a2

Answer»
67010.

() (a') x (2a2) x (4a26)

Answer»
67011.

11. Simplify:(a) a(a+4) +3a (2a2-1)+ 4a2 +4 at a = -2(b) 1502 (2-3a)+5a(5+4b), at a =0, b=-1.12. Simplify :(1) 2xy(x - y)–3x2 (y-y2)-5y2 (2x2 – x)+2xy(y – x)(ii) a(a+5)+3a(2a2 –3)+5a2 +613. Perform the indicated multiplication :(095a(3–2a)6 ( 34) +a+o.

Answer»

13(i) 5a(3-2a) 5a×3-2a×5a = 15a-10a²

bhenchod bhasdiwale thii ke lavde

67012.

-3x(x +2 xy + 3y2)(taking 3 × x as common fDo Thisactorise (i) 9a-6atorisation by grouping the termsxpression ar +hr+ay+ by: You will find that there is no single common factorto(i) 15 ab-35ab(ii) 7Im 21mnBut the first two terms have the common factor 'x' and the last two terms have theIetus see how we can factorise such an expression.

Answer»

solve it in elimination method

67013.

(4) Find four consecutive terms in an A.P. whose sum is 88 and the sum of the 1st and3rd terms is 40

Answer»

Let four consecutive terms are a - 3d , a - d , a + d , a + 3d , where a and d is real numbers.

A/C to question, sum of all four terms = 88(a - 3d) + (a - d) + (a + d) + (a + 3d) = 884a = 88 a = 22 ......(1)

again, sum of 1st and 3rd term is 40e.g., (a - 3d) + (a + d) = 402a - 2d = 40a - d = 20 from equation (1), 22 - d = 20d = 2

hence, a = 22 and d = 2 then, a - 3d = 22 - 3 × 2 = 22 - 6 = 16 a - d = 22 - 2 = 20a + d = 22 + 2 = 24 a + 3d = 22 + 3× 2 = 22 + 6 = 28

therefore, four consecutive term in an A.P are 16, 20, 24, 28

67014.

3. Find the values of x and y so that -3, x, y, 12 may be fourconsecutive terms of an A.P

Answer»

a=-3 x = -3 + d y = -3 + 2d 12 = -3 + 3d so 3d = 12 + 3 = 15 so d = 5 so x = -3+5 = 2 so y = -3+10 = 7

67015.

Express the following decimals as percent.i) 2.5ii) 39.6oc Dnd sells 8 fo

Answer»

Thanks Did🐱

67016.

write the common factor of 14a square b and 35ab square

Answer»

14a²b = 2 × 7 × a × a × b35ab² = 5 × 7 × a × b × b

common factors are1 ,7, a, b, 7a, 7b, 7ab

thanks

67017.

multiply the negative of 2/3by the inverse of 9/4

Answer»

inverse of 9/4 is 4/9negative of 2/3 is -2/34/9*-2/3=-8/27

-8/27 is the correct answer of the given question .

-8/27 is the right answer

-2/3×4/9=-8/27 is the right answer.

-8/27 is the answer of the question

67018.

Write the following cubes in expanded(i)(2r+1(u) (2a -3by

Answer»
67019.

(i) 2a2 + 5a+2

Answer»

2a^2 + 5a + 2 = 0=> 2a^2 + 4a + a + 2 = 0=> 2a(a+2) + 1(a+2)= 0=> (2a + 1)(a + 2) = 0=> a = -2, a = -0.5

PLEASE HIT THE LIKE BUTTON

67020.

(i) (a-b2) - (2a2-2b2)

Answer»
67021.

0) (a') x(2a2) x(4a26)

Answer»

(a^2)*(2a^22)*(4a^26) = 8a^[2+22+26]= 8a^50 ans

67022.

(1) If x +y 14 and 2x-y- 16, then x?

Answer»

x + y = 14 .....(1)2x - y = 16 .....(2)

Adding eq (1) and eq(2)3x = 30x = 10

67023.

8. Solve for x:(i) 1+6++ 16+..-+x=148

Answer»

Given 1 + 6+ 11+ 16 + ............+x = 148take the AP :1,6,11,16,..........,xIn this APa = 1d = 6-1 = 5Given Sn = 148we know that Sn = n/2[2a+ (n-1)d]⇒n/2 [ 2a +(n-1)d] = 148⇒n[2(1) + (n-1)5 ] = 148×2⇒n[ 2 +5n - 5 ] = 296⇒n [ -3 + 5n ] = 296⇒-3n + 5n² = 296⇒5n² - 3n -296 = 0⇒ 5n² - 40n + 37n - 296 = 0⇒5n( n - 8) + 37( n - 8) = 0⇒(n - 8) (5n + 37) = 0⇒n-8 = 0 or 5n +37 = 0⇒n = 8 or n= -37/5.

As n is the no.of terms in the AP can not be fractional and negative∴n=8Theirfore x is the 8th termTn = T8 = a + (n-1)d = 1 + (8-1)5 = 1+7(5) = 1+35 = 36∴8th term = x = 36.

eighth term is thirty six (36)

67024.

2a b(a - a+ 1)- ab(2a4 -2a2 +a)-ab(a + a -1)

Answer»

2a^5b-2a^3b+2a^2b-2a^5b+2a^3b-a^2b-a^4b-a^2b+ab=ab-a^4b=ab(1-a^3)now X3-Y3 =(X-Y) • (X2 +XY +Y2).hence(1^3-a^3)=(1-a)(1+a+a^2)hence=ab(1-a)(1+a+a^2)

67025.

6. Factorisei) 2a2 -5a -7ii) x-164i) x2 -7x + 12

Answer»

x²-7x+12=0x²-3x-4x+12=0x(x-3)-4(x-3)=0(x-4)(x-3)=0

x=3,4

67026.

(4) Find four consecutive terms in an A.P. whose sum is 88 and the sum of the 1st and the3rd terms is 40.

Answer»
67027.

\frac{\partial^{3} u}{\partial x \partial y \partial z}=\left(1+3 x y z+x^{2} y^{2} z^{2}\right) e^{x y z}

Answer»

thankyou sir

67028.

12-1 L = tanL.HS = tan+ tan ,--tan- 2 ll.tan202 11. (cost)·12 in the simplest fople 5 Express tanˊ--< x < _ in the simplest foution We write2COS1-sin x- tan2cos Sin2Sin coS

Answer»
67029.

\frac { a ^ { 3 } + 3 a b ^ { 2 } } { 3 a ^ { 2 } b + b ^ { 3 } } = \frac { x ^ { 3 } + 3 x y ^ { 2 } } { 3 x ^ { 2 } y + y ^ { 3 } } , \text { prove that } \frac { x } { y } = \frac { a } { b }

Answer»
67030.

If the coefficients of 2nd, 3rd and 4th terms inthe expansion of (1value of n is(A) 25.x) are in A.P., then the(B) 7(D) 14(C) 11

Answer»
67031.

\begin{array} { l } { \text { If } \frac { a } { b } = \frac { 2 } { 3 } \text { then find the values of the following expressions. } } \\ { \text { (i) } \frac { 4 a + 3 b } { 3 b } } & { \text { (ii) } \frac { 5 a ^ { 2 } + 2 b ^ { 2 } } { 5 a ^ { 2 } - 2 b ^ { 2 } } } \\ { \text { (iii) } \frac { a ^ { 3 } + b ^ { 3 } } { b ^ { 3 } } } & { \text { (iv) } \frac { 7 b - 4 a } { 7 b + 4 a } } \end{array}

Answer»

Here a=2 and b=3.Substitute the values in the ques.1)17/92)38/2=193)35/274)7/23 Ans

67032.

( a %2B b ) x %2B ( a - b ) y = 2 a b , ( a %2B b ) x - ( a - b ) y = a b

Answer»

Like if you find it useful

67033.

0*a^3 %2B 27*b^6

Answer»

a^3+b^3=(a+b)(a^2-ab+b^2)hence1000a^3=(10a)^3and27b^6=(3b^2)^3hence1000a^3+27b^6=(10a+3b^2)(100a^2-30ab^2+9b^4)

67034.

\left(\frac{3}{4} a^{2}+3 b^{2}\right) \text { and } 4\left(a^{2}-\frac{2}{3} b^{2}\right)

Answer»

If addition is not the question post the complete question

67035.

1. Which of the following numbers is not a perfect square(a) 7056(b) 3969(c) 5478

Answer»

(c) 5478

propertoes of square a number which ending 2,3,7,8 is not perfect square

67036.

(2*a^2 %2B 3*b^2)/(2*a^2 - 3*b^2)

Answer»
67037.

15. Use the given figure to express:) a in terms of b and f;(ii) e in terms of f and g;(ii) d in terms of a and e;(iv) c in terms of e and g.

Answer»
67038.

lation tables.(b)7859x16944*17372(g) 463x 19(h)X 18(1)(m187x 14293x 16

Answer»

78*17=1,326372*18=6,696463*19=874187*14=2,618293*16=4,688

1 answer 9442 answer13263 answer 66964 answer87965 answer 26186 answer 4688

67039.

917. Name the verify the property를 + (+) (+)

Answer»
67040.

a/b=7/3 then\frac{5 a+3 b}{5 a-3 b} \quad\left(\text { ii) } \frac{2 a^{2}+3 b^{2}}{2 a^{2}-3 b^{2}}\right.

Answer»
67041.

\left( \frac { 2 } { 3 } a ^ { 2 } b - \frac { 4 } { 5 } a b ^ { 2 } + \frac { 2 } { 7 } a b + 3 \right) \text { by } 35 a b

Answer»
67042.

The sum of 3 terms of an Ap is121 And the prodect of the firstand the 3rd terms x is the exsistthe Second terms by Lind 3 terms

Answer»

question answer is 9

67043.

Uhe the given figure fo express:a in terms of b and fe in terms of fand gd in terms of a and e;e) e in terms of e and g.

Answer»
67044.

18)36 = 2 x 18 = 2x2x9=2x2x3x3363636 =........................What we observe from the above is that, the factorsthough the order of the factors is different. Usually, ththe greatest as 2x2x3x3.

Answer»

2×2×3×3= 36 right answer

67045.

\frac { \operatorname { cos } 36 - \operatorname { sin } 36 } { \operatorname { cos } 36 + \operatorname { sin } 36 }

Answer»

we have

(cos x - sin x)/( cos x + sin x)= (1- sin x/ cos x)/(1+ sin x/ cos x)= (1- tan x)/ ( 1+ tan x)= tan (45-x) as tan (45-x) = (tan 45 - tan x)/((1+ tan 45 tan x) = (1- tan x)/(1+ tan x)

putting x = 36 we get

(cos36-sin36)/(cos36+sin36)= tan (45-36)= tan 9 = tan (180+9) = tan 189

how uh did d 2nd step

67046.

\left. \begin{array} { l } { \text { Given } \frac { x ^ { 3 } + 12 x } { 6 x ^ { 2 } + 8 } = \frac { y ^ { 3 } + 27 y } { 9 y ^ { 2 } + 27 } . \text { Using componendo } } \\ { \text { and dividendo find } x : y . } \end{array} \right.

Answer»
67047.

Use the given figure to express:(i) a in terms of b and f;(i) e in terms of fand g;fii) d in terms of a and e(iv) c in terms of e and g.15.

Answer»

(i) a = f - b(applying exterior angle theorem, f =a+b)(ii) e = g-f(iii) angle(AGF) = e (vertically opposite angles) By exterior angle theorem, d = a + angle(AGF)d = a + e(iv) c = 180 - f (linear pair) f = 180 -cby exterior angle theorem, g= e +f g = e + 180 - cans. c = 180 + e - g

67048.

18 Given 6.12x = 9324227 . U18 Given z? + 12x-y3 + 27yUsing componendo and dividendo, find x :y (2015)

Answer»
67049.

vldendo, fhnd a:b.x3 +12x y" + 27 y6x2+8 9y: + 27a. GiverUsing componendo and dividendo, find r y.

Answer»

2 by 3 minus 2 by 3 into 3 by 5 + 5 by 2 minus 3 by 5 into 1 by 6

67050.

618+852×68

Answer»

=618+852×68=618+57936=58554