InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 6001. |
If the binomial coefficients of three consecutive terms in the expansion of (a+x)^(n) are in the ratio 1:7:42, then find n. |
|
Answer» |
|
| 6002. |
(i) Find the equation of a circle passes through the point (4,3) and whose centre is (-3,2). Find the equation of a circle in which the equations of its two diameters are 2x+y=5 and x-y=1 and its radius is 5 units. |
|
Answer» |
|
| 6003. |
In triangleABC, angle B = pi//3. " and " angle C = pi//4 . Let D divide BC inernally in the ratio 1 : 3 . Then (sin angle BAD)/(sin angle CAD) equals |
|
Answer» `1/sqrt6` |
|
| 6004. |
If "2 tan" (alpha)/(2) = "tan" (beta)/(2) "then" (3 + 5 cos beta)/(5 + 3 cos beta)= |
|
Answer» `cos ALPHA` |
|
| 6005. |
What is the geometric property possessed by the straight lines of each system given by y +4 = m (x - 5) |
| Answer» SOLUTION :A FAMILY of lines PASSING through (5,-4) | |
| 6006. |
Statement. 1: The incenter of triangle ABC is the orthocenter of the triangle l_(1) l_(2) l_(3) where l_(1) l_(2) l_(3) are excenters of triangle ABC Statement - 2: The incenter of the triangle formed by the feet of altitudes from the vertices of triangle ABC to the opposite sides is the orthocenter of the triangle ABC |
|
Answer» Statement-1 is TRUE, Statement-2 is True, Statement-2 is a CORRECT EXPLANATION for Statement-1 |
|
| 6007. |
Given the vertices A(10, 4), B(-4, 9) and C(-2, -1) of DeltaABC, find the equation of the perpendicular bisector of the side AB. |
|
Answer» |
|
| 6009. |
Which of the following sets are empty sets ? {x : x^(2) -2=0, x " is a rational number "} |
|
Answer» |
|
| 6010. |
If a_(1), a_(2), a_(3),……,a_(n) are in AP, where a_(i) gt 0 for all i, show that (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3))) + …..+ (1)/(sqrt(a_(n-1))+ sqrt(a_(n)))= (n-1)/(sqrt(a_(1)) + sqrt(a_(n))) |
|
Answer» |
|
| 6011. |
Iftan beta = 2 sin alpha sin gamma " cosec "(alpha + gamma) , thencot alpha , cot beta and cot gammaare in |
|
Answer» A.P. |
|
| 6012. |
If (1, 2, 3) is the foot of the perpendicular from the origin to a plane, then find its equation. |
|
Answer» |
|
| 6013. |
A straight line through P(3,4) makes an angle of 60^(@) with the positive direction of the X-axis. Find the coordinates of the points with the line whre are 5 units away from P. |
|
Answer» |
|
| 6014. |
If A = { 3, 5, 7, 9, 11 }, B = {7, 9, 11, 13}, C = {11, 13, 15} and D = {15, 17}, find ( A ∪ D) ∩ ( B ∪ C) |
|
Answer» |
|
| 6015. |
Find the absolute maximum value and the absolute minimum value of thefunctions in the given intervals: f(x) = (x-1)^(2) +3, x in[-3 ,1] |
|
Answer» |
|
| 6016. |
Find the absolute maximum value and the absolute minimum value of thefunctions in the given intervals: f(x) = x^(3), x in [– 2, 2] |
|
Answer» |
|
| 6017. |
Find the absolute maximum value and absolute minimum value of the following functions on the domain specified against the function. f(x) = x + sin2x on [0, pi] |
|
Answer» |
|
| 6018. |
Find the absolute maximum value and the absolute minimum value of thefunctions in the given intervals: f (x) = sin x + cos x , x in [0,pi] |
|
Answer» |
|
| 6019. |
Find the absolute maximum value and absolute minimum value of the following functions on the domain specified against the function. f(x) = 2|x| on [-1, 6] |
|
Answer» |
|
| 6020. |
Find the ratio of division in the point of division lies on the line in |
| Answer» SOLUTION :1 :2 EXTERNALLY | |
| 6021. |
Let R be the relation on Z defined by R= {(a,b): a, b in Z, a-b is an integer}. Find the domain and range of R. |
|
Answer» RANGE of R=Z |
|
| 6022. |
If vec(a), vec(b) are not perpendicular to each other and vec(r ) xx vec(b) = vec(c ) xx vec(b), vec(r ). vec(a)= 0, then vec(r )= |
|
Answer» `VEC(C )- (vec(c ).vec(a))/(vec(a).vec(B))` |
|
| 6023. |
The value of k such that (x-4)/(1)=(y-2)/(1)=(z-k)/(2) lies in the plane 2x-4y+z+7=0 is |
| Answer» Answer :A | |
| 6024. |
Find the vertex, focus, axis , latus rectum and directrix of the parabola y^(2)+4x+6y+17=0 |
|
Answer» Solution :Equation of parabola `y^(2)+4x+6y+17=0` `RARR""y^(2)+6y+9=-4x-17+9` `rArr""(y+3)^(2)=-4(x+2)` `rArr""Y^(2)=-4X` Comparing with `Y^(2)=-4AX` 4a=4 `rArr""a=1` Vertex A = (0,0) `rArr""X=0,Y=0` `rArr""x+2=0,y+3=0` `rArr""x=-2,y=-3` `:.` Co-ordinates of vertex = (-2,-3). Focus X = -a,Y=0 `rArr""x+2=-1,y+3=0` `rArr""x=-3,y=-3` `:.` Co-ordinates of focus = (-3, -3). Equation of axis Y=0 `rArr""y+3=0`. Equation of directrix X=a `rArr""x+2=1` `rArr""x+1=0` Length of latus RECTUM = 4a = 4. |
|
| 6025. |
Match the planes given in List I with their perpendicular coordinate plane given in List II. {:(,ul"List - I",ul"List - II"),("A)",2x+3y+4=0,"I) YZ"),("B)",2y+3z+4=0,"II) ZX"),("C)",2z+3x+4=0,"III) XY"):} The correct match form list I to list II is |
|
Answer» a - II, b - I, C - III |
|
| 6027. |
lim_(x to 2)( ( sqrt(1-cos(2(x-2))))/((x-2))) |
|
Answer» equals `-sqrt(2)` |
|
| 6028. |
Let f(x) bea polnomial of degree four having extreme values at x=1 and at x=2 if underset(x to o) (Lt)[1+(f(x))/(x^(2))]=3then f(2) is equal to |
| Answer» Answer :C | |
| 6029. |
Let |{:(x^(2)+x+1,x+1,2x-3),(3x^(2)-1,x+2,x-1),(x^(2)+5x+1,2x+3,x+4):}|=ax^(4)+bx^(3)+cx^(2)+dx+e be an identity in x. If a,b,c,d are known, then the value of e is |
|
Answer» 29 |
|
| 6030. |
If ars of the same lengths in two circles subtend angles 65^(@) and 110^(@) at the centre, find the ratio of their radii. |
|
Answer» |
|
| 6031. |
The period of sin((2pix)/(a))+3 cos ((2pix)/(b)) where a=12, b=9 is |
|
Answer» 18 |
|
| 6032. |
Find the coordinates of the foci, the vertices, the eccentricity and the length of the latus rectum of the Hyperbola (x^(2))/(16)-(y^(2))/(9)=1 |
|
Answer» Solution :`(x^(2))/(16)-(y^(2))/(9)=1` Here,`a^(2)=16,b^(2)=9rArra=4,b=3` `:."Vertices"-=(pma,0)-=(pm4,0)` ECCENTRICITY `e=SQRT(1+(b^(2))/(a^(2)))=sqrt(1+(9)/(16))=(5)/(4)` Coordinates of foci `-=(pmae,0)-=(pm5,0)` Latus rectum `=(2b^(2))/(a)=(2xx9)/(4)=(9)/(2)` |
|
| 6034. |
Find the derivative with respect to x of the following: (1+x^2)/( x^3) |
|
Answer» |
|
| 6035. |
Find the mean deviation about the mean of the distribution: |
|
Answer» |
|
| 6036. |
If cosec A = 4x + (1)/(16x) then cosec A + cot A = |
|
Answer» `8X` (or) `- (1)/(8x)` |
|
| 6037. |
Evalute Lt_(x to oo)(11x^3-3x+4)/(13x^3-5x^2-7). |
|
Answer» |
|
| 6038. |
Distance between the parallel line (x+2y)^2+13sqrt5(x+2y)+180=0 is |
| Answer» Answer :C | |
| 6039. |
The period of the function f(x)=x[x] is |
|
Answer» 1 |
|
| 6041. |
If A is a non zero column matrix of order mxx1 and B is a non zero row matrix of order 1xxn then the rank of AB is |
|
Answer» 0 |
|
| 6042. |
Consider the function f (x) = sqrtx, x ge 0. Does lim _(x to 0) f (x) exist ? |
|
Answer» |
|
| 6043. |
Let : R rarr Rbe a function defined f(x+1) = (f(x)-5)/(f(x)-3) AA x in R. Thenwhich of the following statement(s) is/are true ? |
|
Answer» `F(2008)=f(2004)` |
|
| 6044. |
Range of f(x)= (x^(2)-x)/(x^(2)+ 2x) is ……. |
|
Answer» R |
|
| 6045. |
The sides of a Delta ^("le') ABCbe 8, 7, 6 and smallest angle is C then Length of median through vertex C is |
|
Answer» `SQRT(95)` |
|
| 6046. |
Let g: R rarr Rbe given by g(x)=3+4x. If g^(n)(x)=gogo.....og(x), and g^(n)(x)=A + Bx then A and B are |
|
Answer» `2^(n+1)-1, 2^(n+1)` |
|
| 6047. |
If A and B are any two events, then the probability that exactly one of them occur is: |
|
Answer» <P>`P(AcupbarB)+P(barAcupB)` |
|
| 6048. |
The values of 'theta' satisfying sin7 theta = sin 4theta - sin theta in 0 lt theta lt pi//2 are |
|
Answer» `pi//9, pi//4` |
|
| 6049. |
Statement-I If alpha=(pi)/(18) then cos alpha+ cos 2 alpha+..... +cos18 alpha=0 Statement- II If (a+2) sin theta(2a-1) cos theta=2a+1 then tan theta=(4)/(3) Which of the above statements is correct |
|
Answer» Only I |
|
| 6050. |
For which Domain, the functions f(x)=2x^(2)-1 and g(x)=1-3x are equal to |
|
Answer» R |
|