Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

6001.

If the binomial coefficients of three consecutive terms in the expansion of (a+x)^(n) are in the ratio 1:7:42, then find n.

Answer»


ANSWER :55
6002.

(i) Find the equation of a circle passes through the point (4,3) and whose centre is (-3,2). Find the equation of a circle in which the equations of its two diameters are 2x+y=5 and x-y=1 and its radius is 5 units.

Answer»


ANSWER :`X^(2)+y^(2)+6x-4y-37=0`
6003.

In triangleABC, angle B = pi//3. " and " angle C = pi//4 . Let D divide BC inernally in the ratio 1 : 3 . Then (sin angle BAD)/(sin angle CAD) equals

Answer»

`1/sqrt6`
`1/3`
`1/sqrt3`
`SQRT(2/3)`

ANSWER :A
6004.

If "2 tan" (alpha)/(2) = "tan" (beta)/(2) "then" (3 + 5 cos beta)/(5 + 3 cos beta)=

Answer»

`cos ALPHA`
`SIN alpha`
`TAN alpha`
`cot alpha`

ANSWER :A
6005.

What is the geometric property possessed by the straight lines of each system given by y +4 = m (x - 5)

Answer»

SOLUTION :A FAMILY of lines PASSING through (5,-4)
6006.

Statement. 1: The incenter of triangle ABC is the orthocenter of the triangle l_(1) l_(2) l_(3) where l_(1) l_(2) l_(3) are excenters of triangle ABC Statement - 2: The incenter of the triangle formed by the feet of altitudes from the vertices of triangle ABC to the opposite sides is the orthocenter of the triangle ABC

Answer»

Statement-1 is TRUE, Statement-2 is True, Statement-2 is a CORRECT EXPLANATION for Statement-1
Statement-1 is True, Statement-2 is True, Statement-2 NOT a correct explanation for Statement-1
Statement-1 is True, Statement-2 is FALSE
Statement -1 is False, Statement-2 is True

Answer :A
6007.

Given the vertices A(10, 4), B(-4, 9) and C(-2, -1) of DeltaABC, find the equation of the perpendicular bisector of the side AB.

Answer»


ANSWER : `28x-10y=19`
6008.

Compute : (12!)/((10!)(2!))

Answer»


ANSWER :66
6009.

Which of the following sets are empty sets ? {x : x^(2) -2=0, x " is a rational number "}

Answer»


ANSWER :it is an emply SET
6010.

If a_(1), a_(2), a_(3),……,a_(n) are in AP, where a_(i) gt 0 for all i, show that (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3))) + …..+ (1)/(sqrt(a_(n-1))+ sqrt(a_(n)))= (n-1)/(sqrt(a_(1)) + sqrt(a_(n)))

Answer»


ANSWER :`((N-1)d)/(d(SQRT(a_(n))+ sqrt(a_(1))))`
6011.

Iftan beta = 2 sin alpha sin gamma " cosec "(alpha + gamma) , thencot alpha , cot beta and cot gammaare in

Answer»

A.P.
G.P.
H.P.
A.G.P.

Answer :A
6012.

If (1, 2, 3) is the foot of the perpendicular from the origin to a plane, then find its equation.

Answer»


ANSWER :14
6013.

A straight line through P(3,4) makes an angle of 60^(@) with the positive direction of the X-axis. Find the coordinates of the points with the line whre are 5 units away from P.

Answer»


ANSWER :`(1/2,(8-5sqrt(3))/2)`
6014.

If A = { 3, 5, 7, 9, 11 }, B = {7, 9, 11, 13}, C = {11, 13, 15} and D = {15, 17}, find ( A ∪ D) ∩ ( B ∪ C)

Answer»


ANSWER :`{ 7, 9, 11, 15 }`
6015.

Find the absolute maximum value and the absolute minimum value of thefunctions in the given intervals: f(x) = (x-1)^(2) +3, x in[-3 ,1]

Answer»


Answer :absolute MINIMUM = 3, absolute maximum= 19
6016.

Find the absolute maximum value and the absolute minimum value of thefunctions in the given intervals: f(x) = x^(3), x in [– 2, 2]

Answer»


ANSWER :ABSOLUTE MINIMUM = -8, absolute MAXIMUM= 8
6017.

Find the absolute maximum value and absolute minimum value of the following functions on the domain specified against the function. f(x) = x + sin2x on [0, pi]

Answer»


ANSWER :ABSOLUTE MINIMUM = 0, absolute maximum= `PI`
6018.

Find the absolute maximum value and the absolute minimum value of thefunctions in the given intervals: f (x) = sin x + cos x , x in [0,pi]

Answer»


ANSWER :ABSOLUTE MINIMUM = -1, absolute MAXIMUM= `sqrt(2)`
6019.

Find the absolute maximum value and absolute minimum value of the following functions on the domain specified against the function. f(x) = 2|x| on [-1, 6]

Answer»


Answer :ABSOLUTE MINIMUM = 0, absolute maximum= 12
6020.

Find the ratio of division in the point of division lies on the line in

Answer»

SOLUTION :1 :2 EXTERNALLY
6021.

Let R be the relation on Z defined by R= {(a,b): a, b in Z, a-b is an integer}. Find the domain and range of R.

Answer»


ANSWER :DOMAIN of R=Z
RANGE of R=Z
6022.

If vec(a), vec(b) are not perpendicular to each other and vec(r ) xx vec(b) = vec(c ) xx vec(b), vec(r ). vec(a)= 0, then vec(r )=

Answer»

`VEC(C )- (vec(c ).vec(a))/(vec(a).vec(B))`
`vec(c )+ (vec(a).vec(b))/(vec(c ).vec(a))`
`vec(c )- (vec(c ).vec(a))/(vec(a).vec(b)) vec(b)`
`vec(c )-(vec(a).vec(b))/(vec(c ).vec(a)) vec(b)`

ANSWER :C
6023.

The value of k such that (x-4)/(1)=(y-2)/(1)=(z-k)/(2) lies in the plane 2x-4y+z+7=0 is

Answer»

7
`-7`
no REAL VALUE
4

Answer :A
6024.

Find the vertex, focus, axis , latus rectum and directrix of the parabola y^(2)+4x+6y+17=0

Answer»

Solution :Equation of parabola
`y^(2)+4x+6y+17=0`
`RARR""y^(2)+6y+9=-4x-17+9`
`rArr""(y+3)^(2)=-4(x+2)`
`rArr""Y^(2)=-4X`
Comparing with `Y^(2)=-4AX`
4a=4
`rArr""a=1`
Vertex A = (0,0)
`rArr""X=0,Y=0`
`rArr""x+2=0,y+3=0`
`rArr""x=-2,y=-3`
`:.` Co-ordinates of vertex = (-2,-3).
Focus X = -a,Y=0
`rArr""x+2=-1,y+3=0`
`rArr""x=-3,y=-3`
`:.` Co-ordinates of focus = (-3, -3).
Equation of axis Y=0
`rArr""y+3=0`.
Equation of directrix X=a
`rArr""x+2=1`
`rArr""x+1=0`
Length of latus RECTUM = 4a = 4.
6025.

Match the planes given in List I with their perpendicular coordinate plane given in List II. {:(,ul"List - I",ul"List - II"),("A)",2x+3y+4=0,"I) YZ"),("B)",2y+3z+4=0,"II) ZX"),("C)",2z+3x+4=0,"III) XY"):} The correct match form list I to list II is

Answer»

a - II, b - I, C - III
a - I, b - II, c - III
a - III, b - I, c - II
a - III, b - II, c - I

ANSWER :C
6026.

What is the resulting sample space if one coins is tossed ,

Answer»


ANSWER :S={H,T}
6027.

lim_(x to 2)( ( sqrt(1-cos(2(x-2))))/((x-2)))

Answer»

equals `-sqrt(2)`
equals `(1)/(sqrt(2))`
does not exist
equls `sqrt(2)`

ANSWER :C
6028.

Let f(x) bea polnomial of degree four having extreme values at x=1 and at x=2 if underset(x to o) (Lt)[1+(f(x))/(x^(2))]=3then f(2) is equal to

Answer»

`-8`
`-4`
0
4

Answer :C
6029.

Let |{:(x^(2)+x+1,x+1,2x-3),(3x^(2)-1,x+2,x-1),(x^(2)+5x+1,2x+3,x+4):}|=ax^(4)+bx^(3)+cx^(2)+dx+e be an identity in x. If a,b,c,d are known, then the value of e is

Answer»

29
24
16
9

Answer :B
6030.

If ars of the same lengths in two circles subtend angles 65^(@) and 110^(@) at the centre, find the ratio of their radii.

Answer»


ANSWER :`22:13`
6031.

The period of sin((2pix)/(a))+3 cos ((2pix)/(b)) where a=12, b=9 is

Answer»

18
36
108
54

Answer :B
6032.

Find the coordinates of the foci, the vertices, the eccentricity and the length of the latus rectum of the Hyperbola (x^(2))/(16)-(y^(2))/(9)=1

Answer»

Solution :`(x^(2))/(16)-(y^(2))/(9)=1`
Here,`a^(2)=16,b^(2)=9rArra=4,b=3`
`:."Vertices"-=(pma,0)-=(pm4,0)`
ECCENTRICITY `e=SQRT(1+(b^(2))/(a^(2)))=sqrt(1+(9)/(16))=(5)/(4)`
Coordinates of foci `-=(pmae,0)-=(pm5,0)`
Latus rectum `=(2b^(2))/(a)=(2xx9)/(4)=(9)/(2)`
6033.

If a = 18 , b= 24 , c= 30 " then"r_2 r_1is

Answer»

` 6`
` 3`
` 1`
` 4`

6034.

Find the derivative with respect to x of the following: (1+x^2)/( x^3)

Answer»


ANSWER :`(3)/(x^4) - (1)/( x^2)`
6035.

Find the mean deviation about the mean of the distribution:

Answer»


ANSWER :1.25
6036.

If cosec A = 4x + (1)/(16x) then cosec A + cot A =

Answer»

`8X` (or) `- (1)/(8x)`
`-8x` (or)` (1)/(8x)`
`8x` (or) `(1)/(8x)`
`-8x` (or) `- (1)/(8x)`

ANSWER :C
6037.

Evalute Lt_(x to oo)(11x^3-3x+4)/(13x^3-5x^2-7).

Answer»


ANSWER :`11//3`
6038.

Distance between the parallel line (x+2y)^2+13sqrt5(x+2y)+180=0 is

Answer»

`SQRT(5)`
`4sqrt(5)`
5
4

Answer :C
6039.

The period of the function f(x)=x[x] is

Answer»

1
2
Non periodie
4

Answer :C
6040.

sum (b^(2) -c^(2))/( a^(2)) sin ^(2) A =

Answer»

` -1`
` (1)/(2) `
`1`
`0`

ANSWER :D
6041.

If A is a non zero column matrix of order mxx1 and B is a non zero row matrix of order 1xxn then the rank of AB is

Answer»

0
1
`-m`
n

Answer :B
6042.

Consider the function f (x) = sqrtx, x ge 0. Does lim _(x to 0) f (x) exist ?

Answer»


Answer :`lim _(X to 0) SQRTX` is does not exist
6043.

Let : R rarr Rbe a function defined f(x+1) = (f(x)-5)/(f(x)-3) AA x in R. Thenwhich of the following statement(s) is/are true ?

Answer»

`F(2008)=f(2004)`
`f(2006)=f(2010)`
`f(2006)=f(2002)`
`f(2006)=f(2018)`

Answer :A::B::C::D
6044.

Range of f(x)= (x^(2)-x)/(x^(2)+ 2x) is …….

Answer»

R
`R-{1}`
`R-{-(1)/(2), 1}`
None of these

Answer :B
6045.

The sides of a Delta ^("le') ABCbe 8, 7, 6 and smallest angle is C then Length of median through vertex C is

Answer»

`SQRT(95)`
`sqrt(95/2)`
`sqrt(95)/2`
`sqrt(95)/4`

ANSWER :b
6046.

Let g: R rarr Rbe given by g(x)=3+4x. If g^(n)(x)=gogo.....og(x), and g^(n)(x)=A + Bx then A and B are

Answer»

`2^(n+1)-1, 2^(n+1)`
`4^(n)-1, 4^(n)`
`3^(n), 3^(n)+1`
`5^(n)-1, 5^(n)`

ANSWER :B
6047.

If A and B are any two events, then the probability that exactly one of them occur is:

Answer»

<P>`P(AcupbarB)+P(barAcupB)`
`P(AcapbarB)+P(barAcapB)`
`P(A)+P(B)-2P(ACAPB)`
`P(A)+P(B)+2P(AcapB)`

ANSWER :B
6048.

The values of 'theta' satisfying sin7 theta = sin 4theta - sin theta in 0 lt theta lt pi//2 are

Answer»

`pi//9, pi//4`
`pi//3, pi//9`
`pi//6, pi//4`
`pi//3, pi//4`

ANSWER :A
6049.

Statement-I If alpha=(pi)/(18) then cos alpha+ cos 2 alpha+..... +cos18 alpha=0 Statement- II If (a+2) sin theta(2a-1) cos theta=2a+1 then tan theta=(4)/(3) Which of the above statements is correct

Answer»

Only I
Only II
Btoh I & II
Neither I nor II

Answer :B
6050.

For which Domain, the functions f(x)=2x^(2)-1 and g(x)=1-3x are equal to

Answer»

R
`1/2, -2}`
`(1/2, 2)`
`[1/2, 2]`

ANSWER :B