Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

8151.

The perimeter of a triangle is 16 cm. One of the sides is of length 6 cm. iF the area of the triangle is 12 sq cm, then the triangle is

Answer»

Right-angled
Isosceles
Equilateral
Scalene

Answer :B
8152.

Equation of a plane passing through the point A (3,-2,1) and perpendicular to 4bari+7barj-4bark is

Answer»

`BARR.(4bari+7barj-4bark) = 6`
`barr.(4bari+7barj-4bark) = (-2)/9`
`barr.(4bari+7barj-4bark) = -9`
`barr.(4bari+7barj-4bark) = -6`

ANSWER :D
8153.

If Tan^(-1)x+Tan^(-1)y+Tan^(-1)z=(pi)/2 and (x-y)^(2)+(y-z)^(2)+(z-x)^(2)=0 then x^(2)+y^(2)+z^(2)=

Answer»

0
4
1
None

Answer :C
8154.

The perimeter of triangle is 14 units and two of its vertices are (-3,0), (3, 0) then the locus of the 3rd vertex is

Answer»

`(X^(2))/(16)+(y^(2))/(7)=1`
`(x^(2))/(25)+(y^(2))/(16)=1`
`(x^(2))/(7)+(y^(2))/(16)=1`
`(x^(2))/(16)+(y^(2))/(25)=1`

Answer :1
8155.

A(2,3),B(1,5),C(-1,2) are three points and PA^(2)+PB^(2)=2PC^(2) then locus of P is

Answer»

`10x+8y-29=0`
`10x+8y+29=0`
`10x-8y+29=0`
`10x-8y-29=0`

ANSWER :1
8156.

The minimum value of f(x)=(2x-3)(3x-1) on [0,1] is

Answer»

`12//11`
`11//12`
`13//12`
1

Answer :B
8157.

Calculate mean, variance and standard deviation for the following distribution.

Answer»


ANSWER :14.18
8158.

The value of a so that the sum of the squares of roots of the equation x^2-(a-2)x-a+1=0 assume the least value is

Answer»

2
0
3
1

Answer :A
8159.

If thed.c's (l,m,n) of two lines are related as l + m + n = 0, 2lm - mn + 2nl = 0, then the angle between the lines is

Answer»

`30^(@)`
`45^(@)`
`90^(@)`
`120^(@)`

ANSWER :D
8160.

Given two vectors veca= -hati +hatj + 2hatk and vecb =- hati - 2 hatj -hatk

Answer»


Solution :a. `vecaxxvecb=|{:(HATI,hatj,hatk),(-1,1,2),(-1,-2,-1):}|=3hati'-3hatj+3hatk`
Hence, the AREA of the triangle is `(3SQRT3)/2`
b. The area of the parallelogram is `3sqrt3`
C. The area of a paralleogram whose diagonals are
`2 veca and 4vecb is 1/2 |2 veca xx 4vecb|=12sqrt3`
d. VOLUME of the parallelpiped
`= |(veca xx vecb).vecc|=sqrt(9+36+9)= 3sqrt6`
8161.

If the functions f(x) and g(x) are continuous in [a,b] and differentiable in (a,b), then EE at lease one 'c' such that a lt c lt b and |{:(f(a),f(b)),(g(a), g(b)):}| =----- |{:(f(a),f'(c)),(g(a), g'(c)):}|

Answer»

a-B
a+b
b-a
`F'(b)-f'(a)`

ANSWER :C
8162.

(8.67 xx 99)/(1.78)

Answer»


ANSWER :19.19
8163.

If abs(sin^(-1)x)+abs(cos^(-1)x)=pi/2, then x in

Answer»

R
[-1, 1]
[0, 1]
`PHI`

ANSWER :C
8164.

Choose the correct or the most suitable answer from the given four alternatives. lim_(xrarrinfty)[(x^2 +5x +6)/(x^2 +x-6)]^x is:

Answer»

`e^4`
`e^2`
`e^3`
1

Answer :A
8165.

The values of f(x)=3 sin(sqrt((pi^(2))/(16)-x^(2))) lie in the inerval ________

Answer»

`[0, (3)/(SQRT(2))]`
`[ - (3)/(sqrt(2)), (3)/(sqrt(2))]`
`(0, (3)/(sqrt(2)))`
`( - (3)/(sqrt(2)), 0)`

ANSWER :A
8166.

Derive section formula in three dimensions for internal division . Also find the co-ordinates of the midpoint of the line joining the points P(x_1,y_1,z_1) and Q (x_2,y_2,z_2) ?

Answer»

<P>

ANSWER : Again mid point P(x,y,Z)= `[(1+5)/2+(2+6)/2,(3+7)/2] =[3,4,5]`
8167.

If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8 } and D = { 7, 8, 9, 10 }, find A ∪ B ∪ C

Answer»


Answer :`={1, 2, 3, 4} CUP {3, 4, 5, 6} cup {5, 6, 7, 8} = {1, 2, 3, 4, 5, 6, 7, 8}`
8168.

If pth term of an A.P. is c and the qth term is d, what is the rth term?

Answer»


ANSWER :`(C(r-q)+d(p-r))/(p-q)`
8169.

ABC is a variable triangle such that A is (1,2), and B and C lie on the line y=x+lambda (lambda " is a variable ). Then the locus of the the orthocenter of "Detla ABC is

Answer»

x+y=0
x-y=0
`x^2+y^2=4`
x+y=3

Answer :D
8170.

If sin (theta + alpha) = a and sin (theta + beta) = b,"then" cos 2 (alpha - beta) - 4ab cos (alpha - beta) =

Answer»

`1 - a^(2) - B^(2)`
`1 - 2A^(2) - 2B^(2)`
`2 + a^(2) - b^(2)`
`2 - a^(2) - b^(2)`

ANSWER :B
8171.

If f(x) = {:{(x^(alpha)logx,","xgt 0),(0,","x=0):} and Rolle' theorem is applicable to f(x) for x in [0,1] then alpha may be equal to

Answer»

`-2`
`-1`
0
`1//2`

ANSWER :D
8172.

Lengths of the tangents from A, B, and C to the incircle are in A.P., then

Answer»

`r_(1),r_(2),r_(3)` are in H.P
`r_(1),r_(2),r_(3)` are in A.P
a,b,C are in A.P
`coaA=(4c-3b)/(2C)`

ANSWER :A::C::D
8173.

A riangle ABC is placed so that the mid-pointof the sides are on the x,y,z axes. Lengths oftheinterceptsmade by the planecontaining the triangleon these axes are respectively alpha, beta, gamma. Coordinatesof the centroidof the triangleABC are

Answer»

`(-alpha//3, beta//3, gamma//3)`
`(alpha//3, -beta//3, gamma//3)`
`(alpha//3, -gamma//3)`
`(alpha//3, beta//3, gamma//3)`

ANSWER :d
8174.

Two sides of a triangle are given by the roots of the equation x^2-5x+6=0 and the angle between the sides is pi//2. Then the perimeter of the triangle is

Answer»

` 5+ sqrt2`
` 5+ SQRT3`
` 5 + SQRT5`
`5+ SQRT7`

Answer :D
8175.

f(x) is continous and differentiable function .Given , f(x) assumes valus of the form +-sqrt(I) where I denotes set of whole numbers whenever x=a or b , otherwise f(x) assumes real values. Also , f(c)=-(3)/(2)and|f(a)|le|f(b)| The number of values that (f(a))^(2)+(f(b))^(2)+(f(c))^(2) can assume is

Answer»

4
2
3
7

Answer :A
8176.

f(x) is continous and differentiable function .Given , f(x) assumes valus of the form +-sqrt(I) where I denotes set of whole numbers whenever x=a or b , otherwise f(x) assumes real values. Also , f(c)=-(3)/(2)and|f(a)|le|f(b)| The number of rational values that f(a) +f(b)+f(c ) can assume is /are

Answer»

4
2
3
5

Answer :C
8177.

ax+by+cz+d=0,dne0 does not represent a plane if

Answer»

`a^(2)+B^(2)+C^(2)=0`
`a^(2)+b^(2)+c^(2)NE0`
`a+b=0`
`a+b+c=0`

Answer :A
8178.

Sin^(-1)("sin"(2pi)/3)=

Answer»

`(pi)/3`
`(2PI)/3`
`(4PI)/3`
`(5PI)/3`

Answer :A
8179.

A bag contains20 tickest with marked numbers 1 to 20 . One ticket is drawn at random . Find the probability that it will be a multiple of 2 or 5.

Answer»


ANSWER :`=(3)/(5)`.
8180.

Write the first six terms of an A.P. in whicha=x ,d = 3x +2

Answer»


ANSWER :X, 4x+2, 7X +4, 10X+ 6,13x+8,16x+10
8181.

Mean is the measure of dispersion.

Answer»


ANSWER :FALSE STATEMENT
8182.

Let vec(a)= 2vec(i) + vec(k), vec(b) = vec(i) + vec(j) + vec(k) and vec( c)= 4vec(i) -3vec(j) + 7vec(k). Determine a vector vec(r ) satisfying vec( r) xx vec(b)= vec( c) xx vec(b) and vec(r ).vec(a)= 0.

Answer»


ANSWER :`-7 VEC(J) + 3vec(K)`
8183.

If f(x) = {{:(x-5, "if" , x le 1),(4x^2-9, "if", 1 lt x lt 2),(3x+4 ,"if", x ge 2):} , then the right hand derivative of f(x) at x=2 is…........... .

Answer»

0
2
3
4

Answer :C
8184.

If sin theta + cos theta =and sin^(3) theta + cos^(3)theta = q, then p(p^(2) - 3) =

Answer»

Q
2Q
`-q`
`-2q`

ANSWER :D
8185.

Two vertices of a triangle have position vectors 3hati+4hatj-4hatk and 2hati+3hatj+4hatk. If the position vector of the centroid is hati+2hatj+3hatk, then the position vector of the third vertex is

Answer»

`- 2hati - hatj + 9 HATK `
`- 2 HATI - hatj - 6 hatk `
`-2 hati - hatj + 6 hatk `
`2hati - hatj + 6hatk `

Answer :` - 2hati - hatj + 9 hatk `
8186.

If the line 2x+y=k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3:2 then k equals

Answer»

`29/5`
5
6
`11/5`

ANSWER :C
8187.

Explain in detail the triangle law of addition.

Answer»

Solution :(i) Let `vecA` and `vecB ` are two vectors they are inclined at angle `theta` between them. (ii) According to triangle law of vector addition, head of the vector `vecA` is connected to tail of the vector `vecB`and both are represented in adjescent side of a triangle in some order. (iii) Let `vecR`be the resultant vector, which is represented in third closing side of the triangle in opposite order. (iv) Let `alpha` be the angle MADE by the resultant vector `vecR`with vector `vecA`. (v) Thus we can write, `vecR = vecA + vecB`

a) Magnitude of resultant vector
(i) From `Delta ABN,`
` cos theta = (AN)/(B) , An = B cos theta"" [cos theta = (adj)/(hyp)]`
` sin theta = (BN)/(B) , BN = B sin theta "" [ sin theta = (OPP)/(hyp)]`
(ii) From `DeltaOBN,`[PYTHOGORAS theoram `hyp^2 = adj^2 + opp^2`]
` OB^2= ON^2 + BN^2`
`R^2 = (A+B cos theta)^2 + (B sin theta)^2`
` R^2 = A^2 + B^2 cos^2 theta + 2AB cos theta + B^2 sin^2 theta`
` R = |vecA + vecB| = sqrt(A^2 + B^2 + 2AB cos theta )`
b) Direction of resultant vectors:
From `DeltaΟΒΝ,`
` tan alpha = (BN)/(ON) = (BN)/(OA + AN)`
` tan alpha = ((Bsin theta)/(A + B cos theta))`
` alpha = tan^(-1) [(B sin theta)/(A + B cos theta)]`
8188.

Three Letters can be posted in five letter boxes in 3^5 ways.

Answer»


ANSWER :`= 5^3 =125 `
8189.

Find all points of discontinuityof f, where f is defined by f(x)={{:(|x|+3," if "x le -3),(-2x," if "-3 ltx lt 3),(6x+2," if "x ge 3):}.

Answer»


ANSWER :discontinous at x-3
8190.

Evaluate the following limits. Lt_(xto0)(sinx-sin(sinx))/x^(3)

Answer»


ANSWER :`1/6`
8191.

If the equation of the plane passing through the line of intersection of the panes ax + by + cz +d=0, a _(1) x + b _(1) y + c _(1) z + d _(1) =0 and perpendicular to the XY-plane is px + py + rz + s =0 then S =

Answer»

`DC _(1)-d _(1) C `
`dc _(1) + d _(1)c `
`d d _(1) + c c_(1)`
`a a _(1) + B b_(1) + c c _(1)`

ANSWER :A
8192.

Let S={1, 2, 3, 4, 5, 6} and E={1, 3, 5} then E' is ……….

Answer»


ANSWER :B::D
8193.

(1)/(1.3) + (1)/(3.5) + (1)/(5.7) + …. (n-3) terms

Answer»

`(N)/( n+2)`
`(n+1)/( n (n+5))`
`(n-3)/( 2n-5)`
`(n-1)/( n (2n-3))`

ANSWER :C
8194.

If the base of an isosceles triangle is of length 2P and the length of the altitude dropped to the base is q, then the distance from the mid point of the base to the side of the triangle is

Answer»

`(AH)/(SQRT(a^(2)+H^(2)))`
`(ah)/(sqrt(a^(2)-h^(2)))`
`(ah)/(sqrt(h^(2)-a^(2)))`
`(2ah)/(sqrt(a^(2)+h^(2)))`

ANSWER :A
8195.

Ifp_1 ,p_2,p_3 are the lengthsof altitudesofDelta ABCfrom the vertices andDeltais the area ofDelta ABC " then "(1)/(p_1)+(1)/(p_2)- (1)/( p_3)=

Answer»

` (s-a)/( DELTA ) `
` (s-c)/( Delta ) `
` (s-B)/( Delta ) `
` (s)/( Delta ) `

ANSWER :B
8196.

-15 lt (3(x-2))/( 5) le 0

Answer»


ANSWER :`(-23,2]`
8197.

Evaluate the following limit : Lim_(theta to pi/4) (sin theta -cos theta)/(theta-1/4pi)

Answer»


ANSWER :`SQRT(2)`
8198.

If f(x) = {{:(3x-2, if , x ge 3),(x^(2)-2, if, -2 le x le 2), (2x+1, if , x lt -3):}, then find, (if exists) (i) f(7), (ii) f(0), (iii) f(-9), (iv) f(-4), (v) f(-2), (vi) f(-7), (vii) f(2.5), (vii) f(4)

Answer»


Answer :(i) 19, (ii) `-2`, (iii) `-17`, (iv) `-7`, (V) 2, (vi) `-13`, (VII) Not defined, (viii) 10
8199.

Find the domainand the rangeof the relation R given by R= { (x,y) : y = x+6/x, where xy in N and x lt 6 }

Answer»


ANSWER :DOMAIN = {1,2,3} RANGE= {5.7}
8200.

If a + b + c = 5 then the maximum value of ab^(3)c is……

Answer»

3
9
27
81

Answer :C