Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

10201.

Find the union of each of the following pairs of sets : A = {x : x is a natural number and multiple of 3} B = {x : x is a natural number less than 6}

Answer»


Answer :`A CUP B= {3, 6, 9, 12, 15,…….,……,} cup {1, 2, 3, 4, 5}`
`A cup B= {1, 2, 3, 4, 5, 6, 9, 12, 15, 18,……,……}`={x : x = 1, 2, 4, 5 or MULTIPLE of `3, x in N` }
10202.

lim_(xrarr0)(1-cos(2x))/x^(2) = 0.

Answer»


ANSWER :FALSE STATEMENT
10203.

Let f(x) = x + 1/(2x + 1/(2x + 1/(2x + ....oo))) " then " sqrt((f(50) f^'(50))/(2)) =

Answer»
10204.

Find the equation of the circle passing through the points (2,3) and (-1,-1) and whose centre is on the line x-3y-11=0.

Answer»


ANSWER :`X^(2)+y^(2)-7x+5y-14=0`
10205.

Find the derivative of y = log_(10)x with respect to x.

Answer»


ANSWER :`(log_(10)E)/(X)`
10206.

For x, y, z, t in R, sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)t+3pi The value of cos^(-1)(min{x,y,z}) is

Answer»

0
`PI/2`
`pi`
`pi/3`

ANSWER :D
10207.

A has 3 shares in a lottery containing 3 prizes and 9 blanks , B hastwo shares in lottery containing 2 prizes and 6 blanks , Copare their chances of success .

Answer»


ANSWER :`952:715`
10208.

Ifa_0 = x, a_( n+1) = f(a_n) , " where"n = 0,1,2……… then answer the following questions If f(x) = (1)/( 1-x)then which of the following is not true?

Answer»

`a_(N) = (1)/(1-X)` if `n= 3k+1`
`a_(n) = (x-1)/(x)` if `n= 3k+2`
`a_(n) =x` if `n=3k`
NONE of these

Answer :D
10209.

Find the sum of the series 1^(2)+3^(2)+5^(2)+...to n terms

Answer»


ANSWER :`(N(2n-:1)(2n-1))/(3)`
10210.

Find a point on the X-axis, which is equidistant from the points (7,6) and (-3,4).

Answer»

<P>

ANSWER :`= P( (15)/(2) ,0)`.
10211.

Statement-I : The point A(3,1,6) is the miror image of the point B(1,3,4) in the plane x-y+z=5. Statement-II : The plane x-y+z=5 bisects the line segment joining A(3,1,6) and B(1,3,4)

Answer»

STATEMENT 1 is false, statement 2 is true.
Statement 1 is true, statement 2 is true, statement 2 is a CORRECT EXPLANATION for statement 1.
Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 2.
Statement 1 is true, statement 2 is false.

ANSWER :C
10212.

If A + B + C = 90^(@) and if none of A,B,C is an odd multipl of 90^(@) then P.T. TanA Tan B + Tan B Tan C + Tan C Tan A = 1 and hence S.T.

Answer»


ANSWER :1
10213.

A= {1, 2, 3, 4, 5}, B= {1, 3, 5, 6}, C= {1, 2, 3}, then find the following sets. B- C

Answer»


ANSWER :`={5, 6}`
10214.

When the axes are rotated through an angle 60^(0)the point Q is changed as (-7,2). Find Q.

Answer»


ANSWER :(i) `(2 - 7 sqrt(3))/(2)`
(ii) 0 = 1
10215.

The transformed equation of 3x^(2) + 3y^(2) + 2xy =2 when the coordinate axes are rotated through an angle of 45^(@)is

Answer»

`x^(2) + 2y^(2) = 1`
`2x^(2) + y^(2) = 1`
`x^(2) + y^(2) = 1`
`x^(2) + 3Y^(2) = 1`

ANSWER :B
10216.

If Lim_(x to a) (x^(9)-a^(9))/(x-a) = 9, find all possible values of a .

Answer»


ANSWER :`1,-1`
10217.

If sin^(2) x gt sqrt(2) sin^(2) x = ( 2 - sqrt(2)) cos ^(2) xthen

Answer»

`x in ( n PI + (pi)/( 6) , n pi + (pi)/( 4)), n in Z`
`x in ( n in + (pi)/( 8) , n pi + (pi)/( 4)) , n in Z`
`x in ( n pi + (pi)/( 4) , n pi + (pi)/(3) ) , n in Z`
`x in ( n pi + (pi)/(3), n pi +( pi)/( 2)) , n in Z`

ANSWER :B
10218.

If Lim_(x to -a) (x^(9)+a^(9))/(x+a) = 9 , find all possible values of a .

Answer»


ANSWER :`=1`
10219.

If x,y,z,t are real numbers such that x^(2) + y^(2) =9,z^(2) + t^(2)=4 and xt-yz=6, then the greatest value of xz is:

Answer»

1
2
3
4

Answer :C
10220.

Find the coefficient of x^4 in the expansion of (1+x)^n(1-x)^n

Answer»

SOLUTION :`C_0C_4-C_1C_3+C_2C_2-C_3C_1+C_4C_0=C_2`
10221.

Let y= (x + (1)/(x))^(2)Find the rate of change of y with respect to x when x=2.

Answer»


ANSWER :`=2X - (2)/( x^3)`.
10222.

If for DeltaABC, cotA cotB cotC gt0then the triangle is

Answer»

right ANGLED
ACUTE angled
OBTUSE angled
all

Answer :B
10223.

If the position vectors of A, B, C, D are 3bar(i)+2bar(j)+bar(k), 4bar(i)+5bar(j)+5bar(k), 4bar(i)+2bar(j)-2bar(k), 6bar(i)+5bar(j)-bar(k) respectively then the position vector of the point of intersection of lines AB and CD is

Answer»

`2bar(i)+BAR(J)-3BAR(K)`
`2bar(i)-bar(j)+3bar(k)`
`2bar(i)+bar(j)+3bar(k)`
`2bar(i)-bar(j)-3bar(k)`

Answer :D
10224.

Solve: x^2+x+1=0

Answer»


ANSWER :`X=(-1isqrt3)/2`
10225.

If f(x)= |cos x- sin x| , then f^(1)(pi/4) =

Answer»

`SQRT2`
`-sqrt2`
0
does not EXIST

ANSWER :D
10226.

Write the following sets in the set-builder form : (3, 6, 9, 12}

Answer»


Answer :`={X : n in N, x= 3N, 1 LE n le 4}`
10227.

Evaluate ""^(10)C_(4).

Answer»


ANSWER :210
10228.

If the median Ad of Delta^("le") ABC makes an angle lfloorADC=45^(@) then |cotB-cotC|=

Answer»

1
2
3
4

Answer :B
10229.

Consider the expansion of (3x^2-1/(2x^3))^10 Find the (r+1)^(th) term in the expansion

Answer»

SOLUTION :`(-1)^R"^10C_r,(3x^2)^(10-r)(1/(2x^3))^r`
10230.

Obtain the equation of he circle circum circle of the triangle with verticies (-2,3), (5, 2) and (6, -1).

Answer»


ANSWER :`X^(2) + y^(2) - 2X + 2y - 23 = 0`
10231.

If x_(1), x_(2), x_(3) and y_(1),y_(2), y_(3) are in arithmetic progression with the same common difference then the points (x_(1),y_(1)) (x_(2),y_(2)) (x_(3), y_(3)) are:

Answer»

VERTICES of an equilateral TRIANGLE
vertices of a right ANGLED triangle
vertices of a right angled ISOSCELES
COLLINEAR

Answer :A::C
10232.

(sin ^(3) theta - cos^(3) theta)/(sin theta - cos theta) - (cos theta)/(sqrt(1 + cot^(2)theta))-2 tan theta cot theta = - 1 , if

Answer»

`THETA in (0 (pi)/2)`
`theta in ((pi)/2 , pi)`
`theta in (pi, (3pi)/2)`
`theta in ((3pi)/2, 2 pi)`

ANSWER :B
10233.

Consider the points A(1,-1,1), B(5,-5,4), C(5,0,8) and D(1,4,5) Find AB,BC,CD and DA

Answer»

SOLUTION :`sqrt41, sqrt41, sqrt41, sqrt41`
10234.

Find the derivative of the following functions: 5secx+4cosx

Answer»


ANSWER :`5secx TAN x-4sinx`
10235.

Let h(x)=f(x)-a(f(x))^(2)+a(f(x))^(3) for all real xh(x) increases as f(x) increases for all x if

Answer»

`a in(0.3)`
`a in[-2,2]`
`a in[3,OO)`
`a in [2,oo]`

ANSWER :A
10236.

Find the orthocentre of the triangle formed by (0,0), (2,-1) (-1,3) whose circumcentre is (5/2,5/2).

Answer»


ANSWER :(-4,-3)
10237.

If det (A_(3xx3))=6, then det (Adj 2A) =

Answer»

144
`3^(2)xx2^(8)`
`3^(3)xx2^(4)`
`2^(2)xx3^(8)`

Answer :B
10238.

Show that the set of all points such that the difference of their distances from (4,0) and (-4,0) is alwaysequal to 2 represent a hyperbola. Find its equation.

Answer»


ANSWER :`(X^(2))/(1)-(y^(2))/(15)=1`
10239.

If the sides of a triangle are in A.P and greatest angle exceeds the least angle of the triangle by 90^(@). Then ratio of the sides .

Answer»

`3 : 4 : 5`
`sqrt 7 - 1 : sqrt7 : sqrt7 + 1`
`sqrt2 : SQRT3 : sqrt7`
`sqrt3 : sqrt7 : sqrt2`

Answer :B
10240.

In triangle ABC, if r_(1)=3, r_(2)=10, r_(3)=15 then R=

Answer»

5
12
13
`13//2`

ANSWER :D
10241.

If a = 18, b=24, c= 30and if l = r_2- r_1 , m = r_3 - r_2, n= r_3 - r_1thendescendingorder of l, m, n is

Answer»

N,m,L
l,m,n
l,m,n
n,l,m

ANSWER :A
10242.

Make correct statements by filling in the symbols ⊂ or ⊄ in the blank spaces : {x : x is a circle in the plane} . . .{x : x is a circle in the same plane with radius 1 unit}

Answer»


ANSWER :`⊄`
10243.

Given P(A)= (3)/(5) and P(B) = (1)/(5) . Find P(A or B), ifA & B are mutually exclusive events.

Answer»


ANSWER :`4/5`
10244.

Solve: 2x^(2)+2x-3=0, giving your answer correct to one decimal place.

Answer»


ANSWER :`-1.8,0.8`, CORRECT to ONE DECIMAL PLACE.
10245.

The perpendicular from the origin to a line meets it at the point (-2,9), find the equation of the line.

Answer»


ANSWER :REQUIRED equation of the LINE is `2X -9Y +85=0`.
10246.

Find the approximate value of log (2.01) give that log 2 = 0.6934

Answer»


ANSWER :0.6984
10247.

The distance of point A(-2,3,1)from the line PQ through P( 3,5,2), which make equal angles with the axes is

Answer»

`2// SQRT3`
`sqrt (14 //3)`
`16//sqrt3`
`5//sqrt3`

Answer :B
10248.

Period of cot ((5-7x)/( 2) ) is

Answer»

`(pi)/(2)`
`(2pi)/(7)`
`(pi)/(7)`
`(7pi)/(2)`

Answer :B
10249.

If barr is any vector then barr =

Answer»

`(barr.BARA^(1))bara+(barr.BARB^(1))barb+(barr.BARC^(1))barc`
`(barr.barc^(1))bara+(barr.barb^(1))barb+(barr.bara^(1))barc`
`(barr.bara^(1))bara-(barr.barb^(1))barb+(barr.barc^(1))barc`
`(bara.bara^(1))bara+(barb.barb^(1))barb+(barc.barc^(1))barc`

ANSWER :A
10250.

If x and y are acute angle such that cosx+"cos" y=(3)/(2) and sin x+"sin" y=(3)/(4) then sin (x+y)=

Answer»

`(2)/(5)`
`(3)/(4)`
`(3)/(5)`
`(4)/(5)`

ANSWER :D