InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 13701. |
Obtain the area of equilateral triangle inscribed in circle x^(2) + y^(2) + 2gx + 2fy + c = 0. |
|
Answer» |
|
| 13702. |
A point P(x,y) moves so that the sum of its distances from point (4,2) and (-2,2) is 8. If the locus of P is an ellipse then its length of semi-major axis is |
|
Answer» 8 |
|
| 13703. |
2x + y ge 0 |
Answer»
|
|
| 13704. |
Iftan "" (A ) /(2) = (5)/(6), tan "" ( B)/(2)= ( 20 )/( 37)" then "a,b,care in |
|
Answer» A.P. |
|
| 13706. |
Evaluate the following limits : Lim_(x to 0) (sin x cos x)/(3x) |
|
Answer» |
|
| 13707. |
If H is the orthocentre of a acute-angled triangle ABC whose circumcircle is x^(2)+y^(2)=16 then circum diameter of the triangle HBC is |
|
Answer» 1 |
|
| 13708. |
If sin theta, 1, cos2 thetaare in G.P. then the general values of theta |
|
Answer» `theta=n PI +(-1)^(n)(pi)/2, n in Z` |
|
| 13709. |
If in a triangle PQR , sin P, sin Q, sin R are in A.P., then |
|
Answer» the ALTITUDE are in A.P |
|
| 13710. |
Which of the following sentences is a statement? |
|
Answer» A. 5 is LESS than 7 |
|
| 13711. |
Derive the formula to find the co-ordinates of a point which divide the line joining the points A(x_1,y_1,z_1) and B(x_2,y_2,z_2)internally in the ratio m:n. |
|
Answer» |
|
| 13712. |
If angleBAC=120^(@) then measure of angleRPQ will be |
|
Answer» `60^(@)` |
|
| 13713. |
Write the expansion of (a-b)^n, n is a positive integer |
| Answer» SOLUTION :`(a+B)^n=a^n-"^nC_1a^(n-1)b+...+(-1)^nb^n` | |
| 13714. |
Let O be the circumcentre, H be the orthocentre, I be the incentre and I_(1)I_(2),I_(3) be the excentres of acuteangled DeltaABC |
|
Answer» |
|
| 13715. |
Which of the following sentences are statements? Justify sin^(2)x+cos^(2)x=0 |
|
Answer» |
|
| 13716. |
The minimum value ofcos^(3) x+ cos^(3) (120^(@) + x) + cos^(3) (120^(@) -x)is |
|
Answer» `1/4` |
|
| 13717. |
Derive cosine formula using the law of sines in a triangleABC. |
|
Answer» |
|
| 13718. |
If p=(sinA)/(sinB) and q=(cos A)/(cos B) |
|
Answer» Solution :`p=(sinA)/(sinB)` and `therefore p/q=(sinA//sinB)/(cosA//COSB)= (sinA)/(sinB).(cosB)/(sinB)` `=tanA. cotB=tanA. 1/(TANB)=(tanA)/(tanB)` `RARR (tanA)/p = (tanB)/(q)=k` (say) `rArr tanA=p.k` and `tan B=q.k` Now `(sinA)/(sinB)=p` `rArr sinA=sinB` `rArr (sinA)/(cosA. secA)= (p.sinA)/(cosB.secB)` `rArr (tanA)/(sqrt(sec^(2)A))= (p.tanB)/(sqrt(sec^(2)B))` `rArr (tanA)/(sqrt(1+tan^(2)A))= (ptanB)/(sqrt(sec^(2)B))` `rArr (tanA)/(sqrt(1+tan^(2)A))=(ptanB)/(sqrt(1+tan^(2)B))` `rArr (pk)/(sqrt(1+p^(2)k^(2)))= (p.qk)/(sqrt(1+q^(2)k^(2)))` `rArr sqrt(1+q^(2)k^(2))=qsqrt(1+p^(2)k^(2))` `rArr 1+q^(2)k^(2)=q^(2)(1+p^(2)k^(2))` `= q^(2)+p^(2)q^(2)k^(2)` `rArr q^(2)k^(2)(1-p^(2))=q^(2)-1` `rArr k^(2)=(q^(2)-1)/(q^(2)(1-p^(2))` `rArr k= +-1/qsqrt((q^(2)-1)/(1-p^(2)))` `therefore tan A = +- p/q sqrt((q^(2)-1)/(1-p^(2)))` and `tan B=+-sqrt((q^(2)-1)/(1-p^(2)))`Ans. |
|
| 13719. |
In the hyperbola x ^(2) - y ^(2) = 4, find the length of the axes, the coordinates of the foci, the ecentricity, and the latus rectum, and the equations of the directrices. |
|
Answer» |
|
| 13720. |
Find the derivatives of the function x tan ^(-1) x |
|
Answer» |
|
| 13721. |
If sum of the n terms of a G.P be S, their product P and the sum of their reciprocals R, then prove that P^(2)=((S)/(R ))^(n) |
|
Answer» <P> |
|
| 13724. |
Find the value of (i) sin 765^(@) (ii) " cosec"(-1410^(@)) (iii) cot ((-15pi)/(4)) |
|
Answer» |
|
| 13725. |
Let f(theta)=(cot theta)/(1+cot theta) and alpha+beta = (5pi)/(4), then the value of f(alpha), f(beta) is |
| Answer» Answer :A | |
| 13726. |
Write the following statement in five different ways, conveying the same meaning. p: If a triangle is equiangular, then it is an obtuse angled triangle. |
|
Answer» |
|
| 13727. |
Find sets A, B and C such that A∩ B, B ∩ C and A ∩ C are non-empty sets and A ∩ B∩ C = φ. |
|
Answer» |
|
| 13729. |
Show that the relative error in the n^(th) power of a number is 'n' times the relative error in that number |
|
Answer» |
|
| 13730. |
A rod AB of length 15 cm rests in between two coordinate axes is such a way that the end point A lies on x-axis and end Point B lies on y-axis. A point P (x,y) is taken on the rod in such a way that AP=6cm . Show that the locus of P is an ellipse. |
|
Answer» <P> |
|
| 13731. |
( cot ""(A)/(2) + cot ""(B)/(2)+ cot ""( C )/( 2))/(cot A + cot B + cot C ) = |
|
Answer» ` (( a+B+C)^(2))/( a^(2) + b^(2) +c^(2))` |
|
| 13732. |
If f(x)=(x^(2)+1)/([x]), ([.] denotes the greatest integer function), 1 le x lt 4, then |
|
Answer» RANGE of F is `[2, (17)/(3))` |
|
| 13733. |
For the equation 2x=tan(2tan^(-1)a)+2tan(tan^(-1)a+tan^(-1)a^(3)), which of the following is valid ? |
|
Answer» `a^(2)x+2a=x` |
|
| 13734. |
Show that |{:(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a):}|=2|{:(a,b,c),(b,c,a),(c,a,b):}| |
|
Answer» |
|
| 13735. |
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8 } and D = { 7, 8, 9, 10 }, find A ∪ B |
|
Answer» |
|
| 13736. |
If vec(u)= vec(a)- vec(b), vec(v)= vec(a) + vec(b) and |vec(a)| =|vec(b)|=2, (vec(a), vec(b)) =(pi)/(3), then |vec(u) xx vec(v)|= |
|
Answer» `SQRT3` |
|
| 13737. |
If barA=(1,a,a^(2)),barB=(1,b,b^(2)),barC=(1,c,c^(2)) are non-coplanar vectors and abs({:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))}:)=0 then abc= |
| Answer» Answer :B | |
| 13738. |
Find the derivative of the function wrt x. Sec ^(-1) ((1)/( sqrt (1 - x ^(2)))) |
|
Answer» |
|
| 13739. |
d/dx{Tan ^(-1) (( sqrt ( 1 + x ^(2)) - sqrt (1 - x ^(2)))/( sqrt (1 + x ^(2)) + sqrt (1 - x ^(2))))} = |
|
Answer» `(X^2)/(SQRT(1 - x^4))` |
|
| 13740. |
Discuss the continuity of f(x)={{:(2x=-1,if x le1),(x^(2),if 1 lt x lt 2),(3x-4,if 2lt x lt 4),(x^(3/2),if x ge4):} on R |
|
Answer» |
|
| 13741. |
If bara.bari = 4 then (bara xx barj).(2barj - 3bark) = |
|
Answer» `-12` |
|
| 13742. |
Statement-I : If the equation 4x^(2)+mxy-3y^(2)=0 represents a pair of real and distinct lines then m in R. Statement-II : If the difference of the slopes of the lines kx^(2)-12xy + y^(2) = 0 is 2 then k is 30 Which of the above statement is correct : |
| Answer» Answer :A | |
| 13743. |
If an angle alpha is divided into two parts A and B such that A-B=x and Tan : Tan B=k:then sin x= |
|
Answer» `(K+1)/(k-1) SIN ALPHA` |
|
| 13745. |
If log_(2)x ge 0" then "log_(1/pi)(sin^(-1)((2x)/(1+x^(2)))+2Tan^(-1)x)=lambda" then "abs(lambda)= |
|
Answer» 1 |
|
| 13746. |
At the point (2,3) on the curve y = x^(3) - 2x + 1, the gradient of the curve increases |
|
Answer» 6 times as FAST as x |
|
| 13747. |
Write the negation of the following statements: r: For every real number x, either x > 1 or x < 1. |
|
Answer» |
|
| 13748. |
If the angle between two lines is (pi)/(4) and slope of one of the lines is (1)/(2), find the slope of the other line. |
|
Answer» |
|
| 13749. |
If the point (0,4) and (0,2) are respectively the vertex and focus of a parabola, then find the equation of the parabola. |
|
Answer» |
|
| 13750. |
If A={a,b,c,d,e} , B ={a,c,e,g} and C= { b,e,f,g}, verify that:(i)A cup B =B cup A (ii) A cup C= Ccup A (iii) Bcup C = C cup B (iv) A cap B= B cap A (v)B capC = C cap B (vi) A capC= C cap A (vii)(A cup B) cup C A cup (B cup C) (viii) A cap C= Ccap A . |
| Answer» | |