Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

6651.

If the direction ratios of two lines are given by l+m+n=0, mn-2ln +lm=0 then the angle between the lines is

Answer»

`pi/4`
`pi/3`
`pi/2`
0

Answer :C
6652.

If A and B are two independent events then P(A cap B) = P(A)*P(B).

Answer»


ANSWER :1
6653.

Consider the exponential equation y=p^((x+1))/K, where K and p are positive real constants and x is a positive real number. The value of y decreases as the value of x increases if and only if which of the following statements about p is true ?

Answer»

<P>0 lt p lt 1
1 lt p lt2
p GT -1
p gt 0

Answer :A
6654.

(1+cos theta+i sintheta)^n=

Answer»
6655.

If xy ne 0, x + y ne 0 and x^(m)y^(n) = (x + y)^(m+n), where, m, n ne N, then (dy)/(dx) is equal to

Answer»

`(y)/(X)`
`(x+ y)/(XY)`
xy
`(x)/(y)`

ANSWER :A
6656.

A balloon, which always remains spherical, has a variable diameter (3)/(2)(2x+1). Find he rate of change of its volume with respect to x.

Answer»


ANSWER :`(27)/(8)PI(2x+1)^(2)`.
6657.

Integrate the following functions sqrt(4-x^2)

Answer»

SOLUTION :`INT SQRT(4-x^2) DX`
=`int sqrt(2^2-x^2) dx`
=`x/2 sqrt(2^2-x^2) + 2^2/2 sin^-1 (x/2)+C`
=`x/2 sqrt(4-x^2) +2sin^-1(x/2)+c`
6658.

The number of ways in which 9 things can be divided into 3 equal groups in

Answer»

`(9!)/(3!)`
`(9!)/(3!)^(4)`
`(9!)/(3!)^(3)`
`""^(9)C_(3)`

Answer :B
6659.

Integrate the following functions : int(tanx)/(secx+cosx)dx

Answer»


ANSWER :`-TAN^(-1)(COSX)+C`
6660.

Letf(x) = |x-1| , thenwhichof thefollowingis true

Answer»

`F(X^2 ) = [f(x) ]^2`
`f(|x|)= |f(x)|`
`f(x+y)=f(x) +f(y)`
NONEOF these

Answer :D
6661.

Let P be a point in first quadrant on parabola y^(2) = 2x whose focal distance is 5. If PF is perpendicular to SP (S is focus) which intersect x axis at point F, then the length of SF is :

Answer»

5

8

Solution :Let point P is `("at"^(2)," 2at")-=((t^(2))/(2),t)`
`because"FOCAL distance = 5"`
`THEREFORE""a+at^(2)=(1)/(2)(1+t^(2))=5`
`rArr""t=3` (in first quadrant)
`rArr"P is "((9)/(2), 3)`
`m_("SP")=(3-0)/((9)/(2)-(1)/(2))=(3)/(4)`

`tan theta=(3)/(4)`
From figure `cos theta=(5)/(SF)`
`(4)/(5)=(5)/(SF) rArr SF=(25)/(4)`
6662.

Area of the region bounded by the curve y = cos x, x = 0 and x = pi is

Answer»

1)2 sq.units
2)4 sq.units
3)3 sq.units
4)1 sq.units

ANSWER :A
6663.

One of the following is perpendicular to 2hati + 2hatj - hatk

Answer»

`-2hati - 2hatj + HATK`
`HATI + hatj-1/2hatk`
`2hati+2hatj+ 8hatk`
`hati+hatj+hatk`

ANSWER :C
6664.

If a,b,c are the lengths of tangents from (0,0) to the circles x^(2)+y^(2)-3x-4y+1=0, x^(2)+y^(2)+4x-6y+4=0, x^(2)+y^(2)-6x-12y+9=0 then the ascending order of a,b,c is

Answer»

a,b,C
b,c,a
a,c,b
b,a,c

Answer :B
6665.

Find the points at which the function f given by f(x)=(x-2)^(4)(x+1)^(3) haslocal minima,

Answer»


ANSWER :X = 2
6666.

Find the period for each of the following functions: (a) f(x)=arc tan (tanx) (b) f(x)=2 cos ""(x-pi)/(3)

Answer»


ANSWER :(a) `T=pi; (B) T=6pi`
6667.

intdx/(sqrt(x+1)+sqrt(x+2))

Answer»

SOLUTION :`I=intdx/(SQRT(x+1)+sqrt(x+2))`
=`INT(sqrt(x+1)-sqrt(x+2))/(x+1-x-2)DX`
=`intsqrt(x+2)-sqrt(x+1)dx`
=`2/3(x+2)^(3/2)-2/3(x+1)^(3/2)+C`
6668.

If either a=0,b=0, then a.b=0. But the converse need not to be true . Justify your answer with an example.

Answer»


ANSWER :TAKE any two NON - zero perpendicular vectors `vecaandvecb`
6669.

|((b+c)^(2),a^(2),a^(2)),(b^(2),(c+a)^(2),b^(2)),(c^(2),c^(2),(a+b)^(2))|=

Answer»

`(a+b+c)(c-a)`
`ABC(a+b+c)^(3)`
`(a-b)(c-c)(c-a)(a+b+c)^(2)`
`2ABC(a+b+c)^(3)`

ANSWER :D
6670.

Without expanding the determinant prove that |{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}|=|{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}|

Answer»


ANSWER :R.H.S
6671.

If log_(3)^(2),log_(3)(2^(x) - 5) and log(2^(x) - 7/2)are in A.P then the value is x is

Answer»

2
3
4
5

Answer :B
6672.

If the symbolic form is (p ^^ r) vv (~q ^^ ~r) vv (~q ^^ ~r),then switching circuit is

Answer»




ANSWER :B
6673.

For all positive intergral values of n, 3 ^(2n)-2n +1 is divisible by

Answer»


ANSWER :2
6674.

Evaluate (iii) int_(0)^(pi)(x sin^(3)x)/(1+cos^(2)x)dx

Answer»


ANSWER :`(PI)/(2)(pi-2)`
6675.

If the pairs of straight lines x^(2) - 2pxy-y^(2)=0 and x^(2) – 2qxy - y^(2) = 0 be such that each pair bisects the angle between the other pair, then

Answer»

<P>p = -q
pq = 1
pq = -1
p = q

Answer :C
6676.

The locus of the point of intersection of the perpendicular tangents to the ellipse x^(2)//a^(2)+y^(2)//b^(2)=1 is

Answer»


ANSWER :`(2Y)/(LAMBDA)`
6677.

The solution of (dy)/(dx)=(px+q)/(ry+s) represents a parabola when

Answer»

`p=0,q=0`
`r=0,s=0`
`p=0,r=0`
`r=0, s NE0`

ANSWER :4
6678.

The probability of getting atmost 4 heads when tossing 7 coins is

Answer»

`(57)/(64)`
`(99)/(128)`
`(5)/(16)`
`(1)/(2)`

Answer :B
6679.

Prove that : If |x| is so small that x^(2) and higher powers of x may be neglected, then find an approximate value of

Answer»

`1+(11X)/(12)`
`2+(35X)/(6)`
`1 - (5x)/(12)`
` 1+ (5x)/(12)`

ANSWER :B
6680.

If ""^(n+1)C_(3)=4(""^(n)C_(2)), then n is equal to

Answer»

12
10
16
11

Answer :D
6681.

Find the Principle values of the following : cosec^(-1)(2)

Answer»


ANSWER :`(PI)/6`
6682.

Show that the volume of the greatest cylinder which can be inscribed in a cone of height hand semi - vertical angle alpha is (4)/(27)pi h^(3)tan^(2)alpha . Also show that the height of the cylinder is(h)/(3) .

Answer»


ANSWER :`(H)/(3)`.
6683.

The term independent of x in the expansion of (x + 1/x^())^(6) is

Answer»

20
15
6
1

Answer :B
6684.

A biased coin is tossed 10 times. The head is 2 times more likely to appear than the tail. The probability that 2^("nd") tail and 4^("th") tail occur at 4^("th") and 10^("th") tosses respectively is

Answer»

`(16)/(3^(9))`
`(320)/(3^(10))`
`(320)/(3^(9))`
`(160)/(3^(10))`

ANSWER :C
6685.

For an ellipse with eccentricity 1/2 the centre is at the origin, if one directrix is x=4, then the equation of the ellipse is

Answer»

`3x^(2)+4y^(2)=1`
`3x^(2)+4y^(2)=12`
`4X^(2)+34Y^(2)=1`
`4x^(2)+3y^(2)=12`

ANSWER :B
6686.

The vlaue of cosec^(2)""(pi)/(7)+cosec^(2)""(2pi)/(7)+cosec^(2)""(3pi)/(7), is

Answer»

20
2
22
23

Answer :D
6687.

If a line makes angle 90^@, 60^@" and "30^@ with the positive direction of x, y and z-axis respectively, find its direction cosines.

Answer»


ANSWER :`0,1/2` and `(SQRT3)/(2)`
6688.

Find the maximum value of absz when abs(z-3/z)=2,z being a complex number.

Answer»

`1+sqrt3`
3
`1+sqrt2`
1

Answer :B
6689.

For positive integers m and n, let god(m, n) denote the largest integer that is a factor of both m and n. Find the sum of all possible values of gcd (a - 1, a^2 + a + 1) where a is a positive integer.

Answer»


ANSWER :4
6690.

Integrate the function (3x^(2))/(x^(6)+1)

Answer»


ANSWER :`tan^(-1)X^(3)+C`
6691.

Examine the continuity of the following functions at indicated points. f(x)={((x^2-1)/(x-1)ifxne1 at x=1),(2if x=1):}

Answer»

Solution :`F(x)=(x^2-1)/(x-1)`
`lim_(xto1)f(x)=lim_(xto1)(x^2-1)/(x-1)=lim_(xto1)(x+1)=2`
`f(1)=2`
Hence `lim_(xto1)f(x)=f(1)` and
so f(x) is CONTINUOUS at x=1
6692.

If the system of linear equations ax+(a+1)y+(a-1)z=0 (a-1)x+(a+2)y+az=0 (a+1)x+ay+(a+2)z=0 has a nontrivial solution then sum of possible values of |a| is _________

Answer»


ANSWER :0.5
6693.

Integrate the following functions with respect to x. (x^(2))/(sqrt(1+x^(2))(1+sqrt(1+x^(2))))

Answer»


ANSWER :`X - SINH^(-1) x + C`
6694.

(1 - omega + omega^(2)) ( 1 - omega^(2) + omega^(4)) ( 1- omega^(4) + omega^(8)) to 2n factors =

Answer»

2
`2^(2N)`
`2n`
`2^(N)`

ANSWER :B
6695.

If n is six more than two thirds of twelve, what is the value n?

Answer»

`10`
`12`
`14`
`18`

ANSWER :C
6696.

If the Rolle's theorem is applicable to the function f defined by f(x)={{:(ax^(2)+b",", |x|le1),(1",", |x|=1),((c)/(|c|)",",|x|gt1):} in the interval [-3, 3], then which of the following alternative(s) is/are correct?

Answer»

`a+B+c=2`
`|a|+|b|+|c|=3`
`2a+4b+3c=8`
`4a^(2)+4b^(2)+5C^(2)=15`

ANSWER :A::B::C::D
6697.

Major and minor axis of an ellipse are 8 and 6 respectively. Initially it touches positive x and y axis and line joining the two focii is parallel to x-axis. It then rotates in anti-clockwise sense, always touching both the positive co-ordinate axes, and the rotation stops when the line joining their focii is vertical for the first time. C is centre of ellipse and O is origin, then:

Answer»

Locus of C is the complete PORTION of `x^2+y^2=25` lying Ist quadrant
Locus of C is PART of the CIRCLE `x^2+y^2=100`
Total distance covered by C is `5tam^(-1)((7)/(24))`
Initial and FINAL positions of C LIES on the curve `xy=12`

Answer :C::D
6698.

If x " log " x (dy)/(dx) + y = log x^2 " and " y ( e) = 0, then y(e^2)=

Answer»

0
1
`1/2`
`3/2`

ANSWER :D
6699.

If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then A^(-1)=

Answer»

A
`A^(2)`
`A^(3)`
`A^(4)`

ANSWER :C
6700.

The value of |[overline(a)*overline(a), overline(a)*overline(b), overline(a)*overline(c)], [overline(b)*overline(a), overline(b)*overline(b), overline(b)*overline(c)], [overline(c)*overline(a), overline(c)*overline(b), overline(c)*overline(c)]|=

Answer»

`-[[OVERLINE(a), overline(B), overline(C)]]`
`2[[overline(a), overline(b), overline(c)]]`
`[[overline(a), overline(b), overline(c)]]^(2)`
`[[overline(a), overline(b), overline(c)]]`

ANSWER :C