Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

6601.

Find the number of positive integers x satisfying the equation 1/x + 1/(x+1) + 1/(x+2) = 13/12.

Answer»


ANSWER :1
6602.

int x^(x)(1+logx)dx=....+c

Answer»

`X^(x)LOGX`
`E^(x^(x))`
`x^(x)`
NONE of these

Answer :C
6603.

If cos ""x/2cos "" (x )/(2 ^(2)) ….cos "" (x)/(2 ^(n)) = (sin x)/( 2 ^(n) sin (x //2^(n))) then ((1)/(2 ^(2))) sec ^(2) "" x/2 + ((1)/(2 ^(4))) ec ^(2) "" (x)/(2 ^(2)) …. ((1)/(2 ^(2n))) sec ^(2) "" (x)/(2 ^(n)) =

Answer»

`((1)/(2 ^(2N)))COEC ^(2) (x)/(2 ^(n)) + cosec ^(2) x 2`
`-((1)/(2 ^(2n)))coec ^(2) (x)/(2 ^(n)) + cosec ^(2) x 2`
`cosec ^(2) (x)/(2 ^(n)) + cosec ^(2) x`
none

Answer :B
6604.

If a variable x takes values 0,1,2,..,n with frequencies proportional to the binomial coefficients .^(n)C_(0),.^(n)C_(1),.^(n)C_(2),..,.^(n)C_(n), then var (X) is

Answer»

`(n^(2)-1)/(12)`
`(n)/(2)`
`(n)/(4)`
None of these

Solution :We have
`overline(X)=(0^(n)C_(0)+1^(n)C_(1)+2^(n)C_(2)+..+n^(n)C_(n))/(.^(n)C_(0)+.^(n)C_(1)+.^(n)C_(2)+..+.^(n)C_(n))=(underset(r=0)OVERSET(n)(sum r^(n)C_(r )))/(underset(r=0)overset(n)(sum .^(n)C_(r )))`
`=(1)/(2^(n))underset(r=1)overset(n)(sum r)(n)/(r ).^(n-1)C_(r-1) "" [because underset(r=0)overset(n)(sum).^(n)C_(r )=2^(n), .^(n)C_(r )=(n)/(r ).^(n-1)C_(r-1)]`
`=(n)/(2^(n))underset(r=1)overset(n)(sum).^(n-1)C_(r-1)=(n)/(2^(n))2^(n-1)=(n)/(2)[because underset(r=1)overset(n)(sum).^(n-1)C_(r-1)=2^(n-1)]`
and `(1)/(N)sum f_(i)x_(1)^(2)=(1)/(2^(n))sum r^(2) .^(n)C_(r )=(1)/(2^(n)) underset(r=0)overset(n)(sum)[r(r-1)+r].^(n)C_(r )`
`=(1)/(2^(n)){underset(r=0)overset(n)(sum)r-(r-1).^(n)C_(r )+underset(r=0)overset(n)(sum r) .^(n)C_(r )}`
`=(1)/(2^(n)){underset(r=2)overset(n)(sum)r(r-1)(n)/(r )(n-1)/(r-1) .^(n-2)C_(r-2)+underset(r=1)overset(n)(sum r) (n)/(r ).^(n-1)C_(r-1)}`
`=(1)/(2^(n)){n(n-1)2^(n-2)+N2^(n-1)}=(n(n-1))/(4)+(n)/(2)`
`therefore "VAR"(X)=(1)/(N)sum f_(i)x_(i)^(2)-overline(X^(2))=(n(n-1))/(4)+(n)/(2)-(n^(2))/(4)=(n)/(4)`
6605.

If a normal chord drawn at 't' on y^(2) = 4ax subtends a right angle at the focus then t^(2) =

Answer»

2
4
8
16

Answer :B
6606.

Find the derivative of the following functions 'ab initio', that is, using the definition.s^2-bs+5

Answer»

Solution :LET `y=s^2-bs+5`
Then
`(dy)/(DS)=lim_(hto0)((s+H)^2-b(s+h)+5-(s^2-bs-5))/h`
`=lim_(hto0)((s^2+2hs+h^2-bs-bh+5-s^2+bs-5))/h`
`=lim_(hto0)(2hs-bh+h^2)/h`
`=lim_(hto0){2s-b+h}=2s-b`
6607.

If each of the points (x,, 4), (-2, y,) lie on the-line joining the points (2, -1) and (5,-3) then the point P(x_(1), y_(1)) lies on the line

Answer»

6(x + y) - 25 = 0
2x + 6Y + 1 = 0
2x + 3Y - 6 = 0
6 (x + y) + 25 = 0

Answer :B
6608.

Dice A has 4 red and 2 white faces whereas dice B has 3 red and 3 white faces. A coin is tossed once, if it falls head then the game continues by throwing the dice A and if it falls tail then the dice B is to be used. If red turns up at first 3 throws, then the probability that dice A is being used is

Answer»

`(7)/(37)`
`(64)/(91)`
`(9)/(41)`
`(27)/(35)`

ANSWER :B
6609.

** be binary operation defined on a set R by a**b=a+b-(ab)^2. Show that ** is commutative, but it is not associative. Find the identity element for **.

Answer»


SOLUTION :N/A
6610.

Write the value of int(e^x-1)/(1-e^(-x))dx

Answer»

SOLUTION :`INT(e^X-1)/(1-e^(-x))dx=intcot^2xdx=int("COSEC"^2x-1)dx=-cot x-x+c`
6611.

Write the value of int(e^x-1)/(1-e^-x)dx

Answer»

SOLUTION :`INT(e^x-1)/(1-e^-x)dx=int(e^x-1)/(1-1/e^x)dx=int(e^x-1)/(e^x-1)xxe^xdx=inte^xdx=e^x+c`
6612.

Ifsin 18^(@)=(sqrt(5)-1)/(4) , thensin 81^(@)=

Answer»

`(SQRT(5)+1)/(4sqrt(2))+(sqrt(10-2sqrt(5)))/(4sqrt(2))`
`(sqrt(5)+1)/(4 sqrt(2))/(sqrt(10+2sqrt5))/(4sqrt(2))`
`(sqrt(5)-1)/(4sqrt(2))+(sqrt(10+2sqrt(5)))/(4sqrt(2))`
`(sqrt(5)-1)/(4sqrt(2))+(sqrt(10-2sqrt(5)))/(4sqrt(2))`

Answer :A
6613.

Approximately how many dollar's worth of vegetables were sold in September. October, and November combined by Produce Stand P?

Answer»

`$5,724`
`$6,230`
`$6,6,21`
`$7,130`

ANSWER :D
6614.

Number of ways of allotting 30 marks to 10 questions so that each question to get atleast two marks is

Answer»

`""^(19)C_(6)`
`""^(19)C_(10)`
`""^(30)C_(10)`
`""^(30)C_(15)`

Answer :C
6615.

Solve the following linear programming problem graphically: Maximize : z=30x+25y Subject to: x+hle6 3x+2yle15 xge0 yge0

Answer»


SOLUTION :NA
6616.

Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.

Answer»


ANSWER :`(X + YY')^(2) = ( x - y)^(2)(1 + (y')^(2))`
6617.

Prove that if the graph of the function y=f(x), defined throughout the number scale, is symmetrical about two vertical axes x =a and x=b (a lt b), then this function is a periodic one.

Answer»


ANSWER :`F[a+(a-X)]=f(x)`
6618.

((1+i)x-i)/(2+i)+((1+2i)y+i)/(2-i)=1rArr(x,y)=

Answer»

(0,0)
(3,1)
(3,-1)
(-3,1)

ANSWER :C
6619.

int (sin x.cos x)/(cos^(2) x + 3 cos x + 2)dx =

Answer»

`log"" ((COS X + 2)^(2))/(| cos x + 1|) + C `
`log |(cos x + 2)/( cos x + 1)| + c `
log`(|1 + cos x |)/((2 + cos x)^(2)) + c`
`log |(1 + cos x)/(2 + cos x)| +c `

ANSWER :C
6620.

Find two positive numbers whose sum is 15 and the sum of whose squares is minimum.

Answer»


ANSWER :`(15)/(2)` and `(15)/(2)`
6621.

IF x in Rthen(2a(x-1) sin^2alpha ) /( x^2- sinalpha )connotliebetween

Answer»

`a SIN ^2ALPHA, acos^2alpha `
`a sin^2( ALPHA//2) a,cos^2( alpha //2)`
`2asin^2 alpha, 2acos ^2 alpha `
`2asin ^2(alpha //2 , 2acos ^2 (alpha //2)`

ANSWER :D
6622.

If vec(a),vec(b),vec(c) are position vectors of the vertices of the triangle ABC, then |(vec(a)-vec(c))xx(vec(b)-vec(a))|/((vec(c)-vec(a)).(vec(b)-vec(a))) is equal to

Answer»

COT A
cot C
`-TAN C`
tan A

Answer :D
6623.

Locus of feet of perpendicular from (5,0) to the tangents of (x^(2))/(16)-y^(2)/(9)=1 is

Answer»

`x^(2)+y^(2)=4`
`x^(2)+y^(2)=16`
`x^(2)+y^(2)=9`
`x^(2)+y^(2)=25`

ANSWER :B
6624.

Solve the following linear programming problem graphically: Maximize : z=200x+500y Subject to: x+2yge10 3x+4yle24 xge0 yge0

Answer»


SOLUTION :NA
6625.

intx^(5)3sqrt((1+x^(3))^(2))dx is equal to

Answer»

`(1)/(8)U^(8//3)-(1)/(5)u^(5//3)+C,u=1+x^(3)`
`(3)/(8)u^(8//3)-(5)/(3)u^(5//3)+C,u=1+x^(3)`
`-(3)/(8)u^(8//3)+(3)/(5)u^(5//3)+C,u=1+x^(3)`
`-(1)/(8)u^(8//3)+(1)/(5)u^(5//3)+C,u=1+x^(3)`

ANSWER :A
6626.

If 1,alpha_1,alpha_2,…..alpha_(n-1) are the n^(th) roots of unity then (1-alpha_1)(1-alpha_2)…..(1-alpha_(n-1))=

Answer»

n-1
n
-1
1

Answer :B
6627.

If x and y are the sides of two squares such that y=x-x^(2). Then the rate of change, if the area of second square with respect to the first square, when x = 2, is ……….

Answer»

1
4
3
6

Answer :C
6628.

((2x+3y)/5)+(2f(x)+3f(y))/5 and f^(')(0)=p and f(0)=q. Then f^(")(0) is. (where f(x) is a polynomial function)

Answer»


SOLUTION :Obviously, `f(x)` is a linear function
ALSO from `f^(')(0)=P` and `f(0)=q, f(x)px+q` or `f^(")(0)=0`
6629.

If the function f:[0,4] rightarrow R is differentiable then show that: (i) For a,b epsilon(0,4), (f(4))^(2) - (f(0))^(2) = 8f(a) f(b) (ii)int_0^4 f(t)dt =2 [alphaf(alpha^^(2) + betaf(beta^(2))]for some alpha, beta, such that 0

Answer»


Answer :(i) `f(a)f(B) for a,b,in (0,4)`
(II) `int_0^4 f(t)dt =2 [alphaf(ALPHA^^(2) + betaf(BETA^(2))]`for some alpha, beta such that `0 ltalpha, beta lt 2`.
6630.

I. underset(x to 0)"Lt" {:(,(1+x)^(2)-(1-x)^(2)-2),(,(1+x)^(3)-(1-x)^(3)-3):} II. If f(x)=(4-7x)/(3x+4) and underset(x to 2)"Lt" f(x)=l, underset(x to 0)"Lt" f(x)=m then the equation whose roots are 1/l, 1//m" is "x^(2)-1=0

Answer»

only I is true
only II is true
both I and II are true
neither I nor II are true

Answer :C
6631.

inte^(x)(1+sinx)/(1+cosx)dx is equal to

Answer»

`log|tanx|+C`
`E^(X)tanx//2+C`
`e^(x)cotx+C`
`sinlogx+C`

ANSWER :B
6632.

(a xx b) xx c + (b xx c) xx a + (C xx a) xx b =

Answer»

0
a
b
c

Answer :A
6633.

John spends (1)/(3) of his waking hours working, (1)/(5) of his waking hours eating meals, (3)/(10) of his waking hours at the gym, and 2hours going ot and from work. He engages in no other activities while awake. How many hours is John awake?

Answer»


ANSWER :12 HOURS
6634.

Let m be a natural number such that 2000lt m lt 60000 and let k be the sum of all the digits in m. Then the number of numbers m for which k is even is

Answer»

19909
19989
18999
19999

Answer :D
6635.

For any natural number n, expressed in base 10, let S(n) denote the sum of all digits of n. Find all natural numbers n such that n^3 = 8S(n)^3 + 6nS(n) + 1.

Answer»


ANSWER :17
6636.

State when the equality will hold, |veca - vecb|ge|veca|-|vecb|

Answer»

Solution :
LET ABC be a triangle such that `vec(AB) = veca, vec(CB) = vecb`
Then `vec(AC) = veca-vecb` be triangle LAW In the `triangleABC, AC+CB ge AB`
`IMPLIES |veca-vecb|+|vecb| ge veca`
`implies |veca-vecb| ge |veca| - |vecb|`
THEREFORE The equality holds when `veca` and `vecb` are collinear vectors.
6637.

int(cosx+xsinx)/(x(x+cosx))dx

Answer»


ANSWER :`log|x|-log|x+cosx|+c`
6638.

bar(a),bar(b) and bar( c ) are unit vectors. bar(a).bar(b)=0=bar(a).bar( c ) and the angle between bar(b) and bar( c ) is (pi)/(3). Then |bar(a)xx bar(b)-bar(a)xx bar( c )|=…………..

Answer»

`(1)/(2)`
1
2
0

Answer :B
6639.

P,Q,R and four point with the position vectors 3i-4j+5k, -4i+5j+k and -3i+4j+3k, respectively. Then the line PQ meets the line RS at the point

Answer»

3i+4j+3k
`-3i+4j+3k`
`-i+4j+k`
`i+j+k`

ANSWER :B
6640.

If alpha, beta, gamma are the angles which a line makes with positive direction of the axes, then match the quantities in Column-I to their values in column-II :

Answer»


ANSWER :A::B::C::D
6641.

For each of the differential equations in find the particular solution satisfying the given condition : (x+y)dy+(x-y)dx=0,y=1 when x=1

Answer»


Answer :`LOG (x^(2) + y^(2)) + 2 tan^(-1) (y)/(x) = (PI)/(2) + log 2`
6642.

Find (dy)/(dx), " if "x= a cos theta, y= a sin theta.

Answer»


ANSWER :`= -COT THETA`.
6643.

y = tan^(-1)((3x-x^3)/(1-3x^2)), 1/(sqrt3) , x , 1/(sqrt3).

Answer»


ANSWER :`(3)/(1+x^(2))`
6644.

Let S be the set of all real values of lamda for which the system of linear equations lamdax+y+z=5lamda 2lamdax+2y-z=1 3y+z=9 has infinitely solutios. Then S

Answer»

equal to R
is a singleton
contains exactly TWO elements
is an EMPTY set

Answer :D
6645.

If the sum of n terms of the series 2^(3) + 4^(3) + 6^(3) + ......... is 3528 then n =

Answer»

10
6
8
9

Answer :B
6646.

For the quadratic polynomial f (x) =4x ^(2)-8ax+a. the statements (s) which hold good is/are:

Answer»

There is only one integral 'a' gor which f (x) is NON- NEGATIVE `AA x in R`
For `a lt 0,` the number zero lies between the zeroes of the polynomial
`f (x) =0` has two DISTINCT solutions in `(0,1) ` for `a in ((1)/(7), (4)/(7))`
The MINIMUM value of `f (x)` for minimum value of a for which f (x) is non-negative `AA x in R` is 0

ANSWER :A::B::C::D
6647.

If a matrix has 5 elements, what are the possible orders it can have ?

Answer»


ANSWER :`1xx5,5xx1`
6648.

Let h(x) = f_(1)(x) + f_(2) (x) + f_(3)(x)+...+f(n)(x), where f_(1)(x), f_(2)(x),f_(3)(x),....,f_(n)(x) are real valued functions of x. Statement I f(x) = |cos|x|| + cos^(-1)("sgn x")+|"In x"| is not differentiable at 3 points in (0, 2pi) Statement II Exactly one function, is f_(i) (x), i = 1, 2,...,n is not differentiable and the rest of the function is differentiable at x = a makes h(x) not differentiable at x = a.

Answer»

Statement I is CORRECT, Statement II is ALSO correct, Statement II is the correct explanation of Statement I
Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
Statement I is correct, Statement II is INCORRECT
Statement I is incorrect, Statement II is correct.

ANSWER :A
6649.

Find the angle between the lines whose direction ratios are a, b, c and b-c, c-a, a-b

Answer»


Answer :SINCE a(b-c)+b(c-a)+c(a-b) = ab-ac+bc-ba_ca-cd = 0, the lines are PERPENDICULAR `therefore` The angle between the lines = `90^@`
6650.

The sum of 15^(2) + 16^(2) + 17^(2) + ....... + 30^(2) =

Answer»

8840
8440
8540
8450

Answer :B