InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
33, 39, 57, 87, 129, ?1). 1832). 1773). 1894). 199 |
|
Answer» The pattern of given series is: → 33, → 39 = 33 + 6,(6 × 1 = 6) → 57 = 39 + 18,(6 × 3 = 18) → 129 = 87 + 42,(6 × 7 = 42) → ? = 129 + 54,(6 × 9 = 54) → ? = 183 |
|
| 2. |
2, 38, 63, 79, 88, 94, 931). 382). 943). 794). 88 |
|
Answer» The GIVEN is in following pattern: 2 2 + 62 = 38 38 + 52 = 63 63 + 42 = 79 79 + 32 = 88 88 + 22 = 92 ≠ 94 92 + 12 = 93 So, the wrong TERM is 94. |
|
| 3. |
1). 41232). 32173). 31934). 454 |
|
Answer» The given SERIES can be obtained as, ⇒ 2 × 2 + 3 = 7 ⇒ 7 × 3 + 4 = 25 ⇒ 25 × 4 + 5 = 105 ⇒ 105 × 5 + 6 = 531 ⇒ 531 × 6 + 7 = 3193 ∴ The NEXT term in the series is 3193 |
|
| 4. |
4, 5, 9, 36, ?, 1771). 562). 763). 454). 35 |
|
Answer» ⇒ 4 + 13 = 5 ⇒ 5 + 22 = 9 ⇒ 9 + 33 = 36 ⇒ 36 + 42 = 52 = ? ⇒ 52 + 53 = 177 |
|
| 5. |
36, 125, 256, 243, ?1). 162). 63). 324). 64 |
|
Answer» The PATTERN of the GIVEN SERIES is: ⇒ 62 = 36 ⇒ 53 = 125 ⇒ 44 = 256 ⇒ 35 = 243 ⇒ 26 = 64 = ? |
|
| 6. |
1). 2022). 2003). 1944). 192 |
|
Answer» The pattern of GIVEN SERIES is: 200, ⇒ 204 = 200 + 4 ⇒ 200 = 196 + 4 ⇒ 192 = 200 - 8 = ? ⇒ 196 = 192 + 4? |
|
| 7. |
1). 1192). 1143). 1184). 115 |
|
Answer» The pattern of given SERIES is: ⇒ 6 + 23 = 14, ⇒ 14 + 32 = 23, ⇒ 23 + 43 = 87, ⇒ 87 + 52 = 112 ⇒? ?= 112 |
|
| 8. |
164, 201, 220, 261, 284, ?1).2).3). 3004). 372 |
|
Answer» The pattern is as follows; ⇒ 164 = 132 - 5 ⇒ 201 = 142 + 5 ⇒ 220 = 152 - 5 ⇒ 261 = 162 + 5 ⇒ 284 = 172 - 5 ⇒ ? = 182 + 5 = 329 ∴ ? = 329 |
|
| 9. |
1721, 2183, 2733, 3347, 4061, 48711). 17212). 27333). 48714). 4061 |
|
Answer» The series FOLLOWS the FOLLOWING pattern: 123 – 7 = 1721 133 – 14 = 2183 143 – 21 = 2723 153 – 28 = 3347 163 – 35 = 4061 173 – 42 = 4871 ∴ Wrong number in the series is 2733, while the right number for the series is 2723. |
|
| 10. |
1). -32). 53). 74). 12 |
|
Answer» ⇒ 8 - 12 = 7 ⇒ 24 - 32 = 15 ⇒ 32 - 42 = 16 ⇒ 40 - 52 = 15 ⇒ 48 - 62 = 12 ⇒ 56 - 72 = 7 ⇒ 64 - 82 = 0 = ? ⇒72 - 92 = -9 |
|
| 11. |
2, 4, 9, 28, ?1). 1252). 1003). 1314). 96 |
|
Answer» The pattern for the given series: New NUMBER = n + n! n! = n × (n – 1) × .... × 1, but 0! = 1 ⇒ 1 + 1! = 1 + 1 = 2 ⇒ 2 + 2! = 2 + 2 = 4 ⇒ 3 + 3! = 3 + 6 = 9 ⇒ 4 + 4! = 4 + 24 = 28 ⇒ 5 + 5! = 5 + 120 = 125 = ? |
|
| 12. |
1). 362). 533). 454). 37 |
|
Answer» The PATTERN of the given series is: ⇒ 95 - 86 = 32 ⇒ 86 - 70 = 42 ⇒ 70 - ? = 52 ⇒ ? = 45 |
|
| 13. |
0, 2, 7, 25,?1). 702). 1053). 1154). 95 |
|
Answer» The PATTERN for the GIVEN series: ⇒ 0 × 1 + 2 = 0 + 2 = 2 ⇒ 2 × 2 + 3 = 4 + 3 = 7 ⇒ 7 × 3 + 4 = 21 + 4 = 25 ⇒ 25 × 4 + 5 = 100 + 5 = 105 = ? |
|
| 14. |
1). 2322). 1843). 1624). 66 |
|
Answer» The PATTERN of the given series is: ⇒ 6930 ÷ 3 = 2310 ⇒ 2310 ÷ 5 = 462 ⇒ 462 ÷ 7 = 66 = ? |
|
| 15. |
1). 2012). 2313). 2994). 331 |
|
Answer» THE ANSWER IS 299. AS THIS TYPE- (SQUARE OF PRIME NUMBER + 10)14=2*2+1019=3*3+1035=5*5+1059=7*7+10131=11*11+10179=13*13+10299=17*17+10 |
|
| 16. |
2, 4, 11, 37, ?1). 1352). 1533). 1424). 152 |
|
Answer» ⇒ 2 × 1 + 2 = 4 ⇒ 11 × 3 + 4 = 37 ⇒ 37 × 4 + 5 = 153 = ? |
|
| 17. |
8, 8, 12, 30, 120, ?1). 4802). 6003). 7204). 750 |
|
Answer» The PATTERN of the GIVEN series is: ⇒ 8 × 1 = 8 ⇒ 8 × (1 + 0.5) = 8 × 1.5 = 12 ⇒ 12 × (1.5 + 1) = 12 × 2.5 = 30 ⇒ 30 × (2.5 + 1.5) = 30 × 4 = 120 ⇒ 120 × (4 + 2) = 120 × 6 = 720 = ? |
|
| 18. |
12, 32, 72, 152, 314, 6321). 322). 723). 1524). 314 |
|
Answer» → 12, → 72 = 32 × 2 + 8, → 152 = 72 × 2 + 8, → 312 = 152 × 2 + 8, Here the wrong term is 314, it should be 312. → 632 = 312 × 2 + 8 |
|
| 19. |
43, 69, 58, 84, 73, ?1). 622). 983). 1094). 63 |
|
Answer» The PATTERN of GIVEN series is: → 43, → 69 = 43 + 26, → 58 = 69 – 11, → 84 = 58 + 26, → 73 = 84 – 11, → ? = 73 + 26, → ? = 99 |
|
| 20. |
1). 212). 123). 304). 42 |
|
Answer» As per the series given in the question, it is CLEAR that it follows a PATTERN: 3 × 4 = 12 4 × 5 = 20 ≠ 21 5 × 6 = 30 6 × 7 = 42 7 × 8 = 56 12, 30, 42, 56 all these FOLLOW the pattern, except 21. Hence, 21 is incorrect answer. |
|
| 21. |
1). 392). 433). 464). 49 |
|
Answer» The pattern of the GIVEN SERIES is: ⇒ 7 - 3 = 4 ⇒ 13 - 7 = 6 ⇒ 21 - 13 = 8 ⇒ 31 - 21 = 10 ⇒ ? - 31 = 12 ⇒ ? = 43 |
|
| 22. |
336, 210, 120, 62, 24, 6, 01). 1202). 623). 244). 6 |
|
Answer» The PATTERN of the given series is: → 336 = 8 × 7 × 6, → 210 = 7 × 6 × 5, → 120 = 6 × 5 × 4, → 60 = 5 × 4 × 3, Here the wrong TERM is 62, it should be 60. → 6 = 3 × 2 × 1, → 0 = 2 × 1 × 0 |
|
| 23. |
1324, 1721, 2190, 2737, 3368, ?1). 39862). 40893). 41364). 4290 |
|
Answer» The PATTERN of the given SERIES is : → 1324 = 113 - 7 → 1721 = 123 - 7, → 2190 = 133 - 7, → 2737 = 143 - 7, → 3368 = 153 - 7, → ? = 163 – 7 ⇒ ? = 4089 |
|
| 24. |
56, 84, ?, 189, 283.50, 425.251). 1682). 1323). 1364). 126 |
|
Answer» In the FOLLOWING number series the pattern we observe is: Any number = 1.5 × (PREVIOUS number) For example:84 = (56 × 1.5) 283.5 = (189 × 1.5) 425.25 = (1.5 ×283.5) So, for ‘?’ we can observe: ? = 1.5 × 84 ⇒ ? = 126 For confirmation we can check if 189 can be obtained from 126 in similar fashion. i.e., 189 = 126 × 1.5 |
|
| 25. |
1). 382). 273). 374). 35 |
|
Answer» 112 - 87 = 25 87 - 67 = 20 67 - 52 = 15 52 - 42 = 10 42 - ? = 5 ? = 37 |
|
| 26. |
1). 2062). 2093). 2054). 202 |
|
Answer» The PATTERN of given series is: →571847105? →+2+11+29+58 →+9+18+29 →+9+11 ⇒ ? = 11 + 2 = 13 = 13 + 29 = 42 = 42 + 58 = 100 = 100 +? 105 = 205 |
|
| 27. |
-4, -3, 1, 19, ?1). 212). 383). 694). 115 |
|
Answer» The pattern for the given series is: (n! – 5) = number Where, n! = n × (n - 1) × (n - 2)... × 1.(0! = 1) ⇒ (1!) – 5 = (1 – 5) = (- 4) ⇒ (2!) – 5 = (2 – 5) = ( -3) ⇒ (3!) – 5 = (6 – 5) = 1 ⇒ (4!) – 5 = (24 – 5) = 19 ⇒ (5!) – 5 = (120 – 5) = 115 = ? |
|
| 28. |
1). 412). 673). 2374). 434 |
|
Answer» The pattern of the given SERIES: Number + [(sum of digits)2 + 1] = new number ⇒ 41 + ((4 + 1)2 + 1) = 41 + (25 + 1) = 41 + 26 = 67 ⇒ 67 + ((6 + 7)2 + 1) = 67 + (169 + 1) = 67 + 170 = 237 ⇒ 237 + ((2 + 3 + 7)2 + 1) = 237 + (144 + 1) = 237 + 145 = 382 ⇒ 382 + ((3 + 8 + 2)2 + 1) = 382 + (169 + 1) = 382 + 170 = 552 Then, 382 is the CORRECT term in place of 434. ∴ 434 is the wrong term in the series. |
|
| 29. |
1, 3, 24, 360, 8640, 302400, ?1). 145251002). 1541520003). 145152004). 15425100 |
|
Answer» We get the FOLLOWING from the given SERIES: ⇒ 3/1 = 3 ⇒ 24/3 = 8 ⇒ 360/24 = 15 ⇒ 8640/360 = 24 ⇒ 302400/8640 = 35 Thus we can evaluate following pattern from the above result: ⇒ 8 – 3 = 5 ⇒ 15 – 8 = 7 ⇒ 24 – 15 = 9 ⇒ 35 – 24 = 11 i.e. the value of differences is consecutive odd numbers. ∴ Next difference must be 13 i.e the next QUOTIENT must be ⇒ 35 +13 = 48 Now, let the required number in the given number series be X. Then, ⇒ X/302400 = 48 ⇒ X = 14515200 ∴ The required term in given number series is 14515200 |
|
| 30. |
16, 48, 24, 72, 36, 108, ?1). 1482). 1963). 2164). 224 |
|
Answer» The pattern of GIVEN series is : → 16, → 48 = 16 × 3, → 24 = 48 × 0.5, → 72 = 24 × 3, → 36 = 72 × 0.5, → 108 = 36 × 3, → ? = 108 × 0.5, → ? = 54 |
|
| 31. |
47/14, 62/19, 88/27, 122/39, 134/431). 47/142). 62/193). 88/274). 122/39 |
|
Answer» The SERIES follows the FOLLOWING PATTERN, ⇒ (14 × 3 + 5)/14 = 47/14 ⇒ (19 × 3 + 5)/19 = 62/19 ⇒ (27 × 3 + 5)/27 = 86/27 ⇒ (39 × 3 + 5)/39 = 122/39 ⇒ (43 × 3 + 5)/43 = 134/43 ∴ Wrong term in the series is 88/27 |
|
| 32. |
7, 15, 32, ?, 138, 2811). 652). 673). 664). 57 |
|
Answer» The pattern of the given series is as follows: ⇒ 15 = 7 × 2 + 1 ⇒ 32 = 15 × 2 + 2 ⇒ 67 = 32 × 2 + 3 ⇒ 138 = 67 × 2 + 4 ⇒ 281 = 138 × 2 + 5 |
|
| 33. |
18, 20, 44, 138, 560, 2810, ?1). 168182). 168363). 168544). 16872 |
|
Answer» The given number series is based on the following pattern. 18 × 1 + 2 = 20 20 × 2 + 4 = 44 44 × 3 + 6 = 138 138 × 4 + 8 = 560 560 × 5 + 10 = 2810 ? = 2810 × 6 + 12 = 16872 |
|
| 34. |
1600, 1600, 2400, 6000, 21000, ?1). 1155002). 2112003). 2300114). 115522 |
|
Answer» The series follows the following PATTERN: 1600 × 2/2 = 1600 1600 × 3/2 = 2400 2400 × 5/2 = 6000 6000 × 7/2 = 21000 ⇒ According to the logic the NEXT number after 21000 is 21000 × 11/2 = 115500 |
|
| 35. |
6, 18, 96, ? , 77761). 7502). 3453). 2504). 5456 |
|
Answer» The PATTERN for the given series: ⇒ 20 × 6 = 1 × 6 = 6 ⇒ 31 × 6 = 3 × 6 = 18 ⇒ 42 × 6 = 16 × 6 = 96 ⇒ 53 × 6 = 125 × 6 = 750 = ? ⇒ 64 × 6 = 1296 × 6 = 7776 |
|
| 36. |
2, 4, 10, 22, ?1). 442). 383). 424). 46 |
|
Answer» The PATTERN of the GIVEN SERIES is: ⇒ 2 + 12 + 1 = 2 + 1 + 1 = 4 ⇒ 4 + 22 + 2 = 4 + 4 + 2 = 10 ⇒ 10 + 32 + 3 = 10 + 9 + 3 = 22 ⇒ 22 + 42 + 4 = 22 + 16 + 4 = 42 = ? |
|
| 37. |
2, 3, 10, 39, ?1). 1722). 1543). 744). 62 |
|
Answer» The pattern of the given series is: ⇒ (3 × 2) + 22 = 10 ⇒ (10 × 3) + 32 = 39 ⇒ (39 × 4) + 42 = 172 = ? |
|
| 38. |
1). 8402). 643). 3604). 96 |
|
Answer» 128 × 0.5 = 64 64 × 1.5 = 96 240 × 3.5 = 840 840 × 4.5 = 3780 |
|
| 39. |
12, 30, 60, 108, 180, 282, ?1).2). 4203). 4444). 496 |
|
Answer» The pattern of the given SERIES is: → 12 = 13 + 11 → 30 = 23 + 22, → 60 = 33 + 33, → 108 = 43 + 44, → 180 = 53 + 55, → 282 = 63 + 66, → ? = 73 + 77, ⇒ ? = 420 |
|
| 40. |
41, 123, ?, 4920, 639601). 6142). 6153). 6164). 617 |
|
Answer» Fibonacci Series is a special number series in which each term is obtained by ADDING the PREVIOUS 2 terms starting from 1, 1. The Fibonacci Range Used: 3, 5, 8, 13 41 × 3 = 123 123 × 5 = 615 615 × 8 = 4920 4920 × 13 = 63960 ∴ The missing term is 615 & correct alternative is 2. |
|
| 41. |
1). 2042). 2083). 2064). 202 |
|
Answer» The series FOLLOWS the following pattern: 6 × 1 + 1 = 7 7 × 2 + 2 = 16 16 × 3 + 3 = 51 208 × 5 + 5 = 1045 ∴ The MISSING term is 208. $ |
|
| 42. |
1). 66362). 63663). 63364). 6633 |
|
Answer» 11 × 22 = 44 44 × 32 = 396 396 × 42 = 6336 = ? 6336 × 52 = 158400. |
|
| 43. |
17, 18, 14, 23, 7, ?1). 322). 433). 254). 27 |
|
Answer» The PATTERN of the GIVEN SERIES is: ⇒ 17 + 12 = 17 + 1 = 18 ⇒ 18 - 22 = 18 - 4 = 14 ⇒ 14 + 32 = 14 + 9 = 23 ⇒ 23 - 42 = 23 - 16 = 7 ⇒ 7 + 52 = 7 + 25 = 32 = ? |
|
| 44. |
50, 24, ?, 40, 1521). 202). 483). 344). 22 |
|
Answer» 50, 50 × 0.5 - 1 = 24 24 × 1 - 2 = 22 22 × 2 - 4 = 40 |
|
| 45. |
3, 11, 31, 69, 131, 223, ?1). 3512). 3503). 3494). 270 |
|
Answer» If we look at the numbers carefully, they follow the pattern, ⇒ 3 = 13 + 2 ⇒ 11 = 23 + 3 ⇒ 31 = 33 + 4 ⇒ 69 = 43 + 5 ⇒ 131 = 53 + 6 ⇒ 223 = 63 + 7 According to the pattern, the next NUMBER should be, ⇒ 73 + 8 = 351 ∴ ? = 351 |
|
| 46. |
1). 3.52). 19.53). 1371.56254). 144.375 |
|
Answer» ⇒ 1 × 3.5 = 3.5 ⇒ 3.5 × 5.5 = 19.25 ⇒ 19.25 × 7.5 = 144.375 ⇒ 144.375 × 9.5 = 1371.5625 |
|
| 47. |
7, 9, 19, 45, 95, ?1). 1502). 1603). 1454). 177 |
|
Answer» The pattern of the given series is: → 7, → 9 = 7 + 12 + 1 → 19 = 9 + 32 + 1 → 45 = 19 + 52 + 1 → 95 = 45 + 72 + 1 → ? = 95 + 92 + 1 ⇒ ? = 177 |
|
| 48. |
1). 1482). 1383). 1354). 147 |
|
Answer» Difference49 36 25 16 than 9This are the perfect squre of 7 6 5 4 and than 3..So we ADD 9 in 133 .. than the right ans is 142 ..GIVEN options are wrong in this series.. |
|
| 49. |
41, 43, 55, 85, ?1). 1622). 1213). 4144). 91 |
|
Answer» The pattern of the given SERIES: ⇒ 41 + (22 - 2) = 41 + (4 - 2) = 41 + 2 = 43 ⇒ 43 + (42 - 4) = 43 + (16 - 4) = 43 + 12 = 55 ⇒ 55 + (62 - 6) = 55 + (36 - 6) = 55 + 30 = 85 ⇒ 85 + (82 - 8) = 85 + (64 - 8) = 85 + 56 = 141 = ? |
|
| 50. |
0.8, 2.4, 7.2, 21.6, ?1). 23.22). 363). 58.64). 64.8 |
|
Answer» The PATTERN of the GIVEN SERIES is: ⇒ 0.8 × 3 = 2.4 ⇒ 2.4 × 3 = 7.2 ⇒ 7.2 × 3 = 21.6 ⇒ 21.6 × 3 = 64.8 = ? |
|