InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
4, ?, 78, 276, 8881). 162). 223). 274). 18 |
|
Answer» 4, (18 + 8) × 3 = 78 (78 + 14) × 3 = 276 |
|
| 52. |
1). 2322). 2393). 2384). 236 |
|
Answer» The pattern of given series is: ⇒ 7 × 1 + 1 = 8, ⇒ 8 × 2 + 2= 18, ⇒ 18 X 3 + 3 = 54 + 3 = 57, ⇒ 57 × 4 + 4 = 228 + 4 = 232, ⇒ 232 ×? 5 + 5= 1160 + 5 = 1165, ⇒ ? = 232 |
|
| 53. |
1). 19782). 3313). 139594). 15 |
|
Answer» As per the SERIES given in the question, it is CLEAR that it follows a pattern of: 15 × 4 + 5 = 65 65 × 5 + 6 = 331 331 × 6 + 7 = 1993 ≠ 1978 1993 × 7 + 8 = 13959 15, 65, 331, 1978, 13959 all these follow the pattern, except 1978. Hence, 1978 is INCORRECT. |
|
| 54. |
5, 12, 21, 32, ?, 601). 402). 363). 454). 54 |
|
Answer» The pattern of the given series : ⇒ 12 + 9 = 21 ⇒ 21 + 11 = 32 ⇒ 32 + 13 = 45 = ? ⇒ 45 + 15 = 60 ∴ The MISSING number of the series = 45 |
|
| 55. |
1). 492). 443). 484). 47 |
|
Answer» The pattern of given series is: → 179 + 22 = 179 + 4 = 183, → 183 – 33 = 183 – 27 = 156, → 156 + 42 = 156 + 16 = 172, → 172 – 53 = 172 – 125 = 47 ⇒ ? ?= 47 |
|
| 56. |
6, 9, 15, 27, 51, ?1). 842). 993). 1234). 75 |
|
Answer» The GIVEN series, ⇒ 6 + 3 = 9 ⇒ 9 + 6 = 15 ⇒ 15 + 12 = 27 ⇒ 27 + 24 = 51 ⇒ 51 + 48 = 99 = ? |
|
| 57. |
1). 602). 663). 824). 80 |
|
Answer» The pattern of GIVEN series is: ⇒ 9 × 0.5 + 0.5 = 5 ⇒ 5 × 1 + 1 = 6 ⇒ 6 × 1.5 + 1.5 = 10.5 ⇒ 23 × 2.5 + 2.5 = 60 = ? |
|
| 58. |
1). 1562). 1583). 1624). 168 |
|
Answer» The pattern of the GIVEN series is: 16 = 16 + 0 × 1 22 = 16 + 2 × 3 42 = 22 + 4× 5 84 = 42 + 6 × 7 |
|
| 59. |
1). 10000112). 10000013). 10000214). 100031 |
|
Answer» The pattern of given series is: ⇒ 12 + 9 = 21 ⇒ 21 + 90 = 111 ⇒ 111 + 900 = 1011 ⇒ 1011 + 9000 = 10011 ⇒ 10011 + 90000 = 100011 ⇒ 100011 + 900000 = 1000011 |
|
| 60. |
6, 3.5, 4.5, 11, ?, 3921). 662). 483). 454). 35 |
|
Answer» ⇒ 6 × 0.5 + 0.5 = 3.5 ⇒ 3.5 × 1 + 1 = 4.5 ⇒ 4.5 × 2 + 2 = 11 ⇒ 11 × 4 + 4 = 48 = ? |
|
| 61. |
1). \(\frac{{10}}{{1000}}\)2). \(\frac{{100}}{{1900}}\)3). \(\frac{{10}}{{900}}\)4). \(\frac{{10}}{{800}}\) |
|
Answer» The pattern of the given series is as follows: $(\begin{array}{l} \Rightarrow \frac{{50}}{{500}} = \frac{1}{{10}}\\ \Rightarrow \frac{{40}}{{1200}} = \frac{1}{{30}}\\ \Rightarrow \frac{{30}}{{1500}} = \frac{1}{{50}}\\ \Rightarrow \frac{{20}}{{1400}} = \frac{1}{{70}}\\ \Rightarrow \frac{{10}}{{900}} = \frac{1}{{90}} \end{array})$ |
|
| 62. |
81, 192, 375, 648, ?1). 10292). 13763). 14424). 1138 |
|
Answer» The PATTERN of the above problem is: First Term, 81 = (9)2 – (0)2 Second term, 192 = (14)2 – (2)2 = (9 + 5)2 – (0 + 2)2 Third Term, 375 = (20)2 – (5)2 = (14 + 6)2 – (2 + 3)2 Fourth Term, 648 = (27)2 – (9)2 = (20 + 7)2 – (5 + 4)2 ∴ Fifth Term, ? = (27 + 8)2 – (9 + 5)2 = (35)2 – (14)2 = 1029 |
|
| 63. |
512, 343, 216, ?, 641). 1452). 1353). 1404). 125 |
|
Answer» 43 = 64 53 = 125 63 = 216 73 = 343 83 = 512 |
|
| 64. |
6, 30, 160, 820, ?1). 39982). 41303). 41024). 4054 |
|
Answer» 6, (6 + 0) × 5 = 30 (30 + 2) × 5 = 160 (820 + 6) × 5 = 4130 |
|
| 65. |
1). 652). 853). 754). 55 |
|
Answer» The pattern of the given series is: ⇒ 13 - 12 - 1 = -1 ⇒ 23 - 22 - 2 = 2 ⇒ 33 - 32 - 3 = 15 ⇒ 43 - 42 - 4 = 44 ⇒ 53 - 52 - 5 = 95 = ? |
|
| 66. |
1). 1162). 1263). 1324). 112 |
|
Answer» Solution : Given series : 11 , 14 , 22 , 40 , 73 , ? The above series follow the pattern, 3 => 3 + 11 = 14 (3 + 5) = 8 => 8 + 14 = 22 (8 + 10) = 18 => 18 + 22 = 40 (18 + 15) = 33 => 33 + 40 = 73 (33 + 20) = 53 => 53 + 73 = 126 So, the correct OPTION is 2). 126 |
|
| 67. |
12, 27, ?, 75, 1081). 252). 483). 814). 53 |
|
Answer» 22 × 3 = 12 32 × 3 = 27 42 × 3 = 48 52 × 3 = 75 62 × 3 = 108 |
|
| 68. |
1). 8422). 9723). 9344). 876 |
|
Answer» 4, 4 × 3 = 12 12 × 3 = 36 36 × 3 = 108 108 × 3 = 324 324 × 3 = 972 |
|
| 69. |
1). 72). 1883). 574). 37 |
|
Answer» ⇒ 1 + 22 + 2 = 7 ⇒ 7 + 33 + 3 = 37 ⇒ 37 + 42 + 4 = 57 ⇒ 57 + 53 + 5 = 187 ⇒ 187 + 62 + 6 = 229 ∴ Wrong number in series = 188 |
|
| 70. |
1). 502). 523). 564). 64 |
|
Answer» The pattern of the given PROBLEM is: 2 + (12 – 1) = 2 2 + (22 – 1) = 5 5 + (32 – 1) = 13 13 + (42 – 1) = 28 ∴ ? = 28 + (52 – 1) = 52 |
|
| 71. |
1). 1322). 1983). 1924). 190 |
|
Answer» The SERIES follows the following pattern: 6 × 0.5 = 3 3 × 1 = 3 3 × 2 = 6 6 × 4 = 24 24 × 8 = 192 = ? ∴ The missing TERM is 192. $ |
|
| 72. |
4, 12, 28, 60, 124, ?1). 2662). 2363). 2524). 275 |
|
Answer» ⇒ 4 × 2 + 4 = 12 ⇒ 12 × 2 + 4 = 28 ⇒ 28 × 2 + 4 = 60 ⇒ 60 × 2 + 4 = 124 ⇒ 124 × 2 + 4 = 252 = ? |
|
| 73. |
5, 17, 43, 89, ?1). 1692). 1503). 1614). 155 |
|
Answer» ⇒ 13 + 22 = 1 + 4 = 5 ⇒ 23 + 32 = 8 + 9 = 17 ⇒ 33 + 42 = 27 + 16 = 43 ⇒ 43 + 52 = 64 + 25 = 89 ⇒ 53 + 62 = 125 + 36 = 161 = ? |
|
| 74. |
540, 547, 1100, 3305, ?1). 136242). 132143). 132244). 13524 |
|
Answer» The pattern of the given series: ⇒ 540 × 1 + 7 = 547 ⇒ 1100 × 3 + 5 = 3305 ⇒ 3305 × 4 + 4 = 13224 = ? ∴ The missing NUMBER of the series = 13224 |
|
| 75. |
1). 1442). 923). 1284). 112 |
|
Answer» The PATTERN of the given series is: ⇒ 7 × 1 - 2 = 7 - 2 = 5 ⇒ 5 × 2 - 4 = 10 - 4 = 6 ⇒ 6 × 4 - 8 = 24 - 8 = 16 ⇒ 16 × 8 - 16 = 128 - 16 = 112 = ? |
|
| 76. |
12, 20, 72, ?, 89281). 1442). 5603). 44644). 2304 |
|
Answer» 12, 12 × 2 - 4 = 20 20 × 4 - 8 = 72 560 × 16 - 32 = 8928 |
|
| 77. |
5, 12, 39, 200, 1407, ?1). 3549992). 2345333). 154884). 150164 |
|
Answer» The series FOLLOWS the following pattern: (5 × 2) + 2 = 12 (12 × 3) + 3 = 39 (39 × 5) + 5 = 200 (200 × 7) + 7 = 1407 ⇒ According to the logic the next NUMBER after 1407 is (1407 × 11) + 11 = 15488 |
|
| 78. |
1). 1282). 183). 984). 82 |
|
Answer» ⇒ 12 + 12 = 2 ⇒ 22 + 22 = 8 ⇒ 32 +32 = 18 ⇒ 42 + 42 = 32 ⇒ 52 + 52 = 50 ⇒ 62 + 62 = 72 = wrong term ⇒ 72 + 72 = 98 ⇒ 82 + 82 = 128 |
|
| 79. |
5, 12, 17, 29, 46, 75, 121, ?1). 1962). 1923). 1854). 188 |
|
Answer» The PATTERN of the GIVEN series is a Fibonacci series. Every number from third number is a sum of the previous TWO numbers. ⇒ 29 = 17 + 12 ⇒ 46 = 29 + 17 ⇒ 75 = 46 + 29 ⇒ 121 = 75 + 46 ⇒ 196 = 121 + 75 = ? |
|
| 80. |
4, 12, 45, 196, ?1). 7642). 8443). 5764). 984 |
|
Answer» The PATTERN of the above problem is: Second term, 12 = 4 × 2 + 22 Fourth Term, 196 = 45 × 4 + 42 ∴ FIFTH Term, ? = 196 × 5 + 52 = 1005 |
|
| 81. |
1). 172). 233). 554). 85 |
|
Answer» ⇒ 17 + 2 × 3 = 23 ⇒ 23 + 3 × 4 = 35 ⇒ 35 + 4 × 5 = 55 ⇒ 55 + 5 × 6 = 85 ⇒ 85 + 6 × 7 = 127 ∴ Wrong number in series = 125 |
|
| 82. |
1). 8452). 8753). 8654). 885 |
|
Answer» We have, 762 – 656 = 106 656 – 557 = 99 557 – 465 = 92 The difference between successive terms is decreasing by 7. Hence, the second TERM MUST be greater than the third term by 106 + 7 = 113. So, the term is = 762 + 113 = 875 |
|
| 83. |
98, ?, 46, 88, 3441). 482). 233). 1964). 110 |
|
Answer» 98, 98 × 0.5 - 1 = 48 48 × 1 - 2 = 46 46 × 2 - 4 = 88 88 × 4 - 8 = 344 |
|
| 84. |
41472, 5184, 576, 72, 8, ?1). 02). 93). 14). 8 |
|
Answer» The above pattern MAY be evaluated as: → 41472 → 41472/8 = 5184 → 5184/9 = 576 → 576/8 = 72 → 72/9 = 8 Hence the NEXT number MUST be, → 8/8 = 1 ∴The required TERM in the given number series is 1. |
|
| 85. |
4, 6, 8, 12, 12, 18, 16, ?1). 182). 303). 204). 24 |
|
Answer» Here we have two alternate SERIES: ∴ ? = 24 will be the missing term. |
|
| 86. |
1). 26802). 16803). 28804). 2400 |
|
Answer» 4 × 2 = 8 8 × 3 = 24 24 × 4 = 96 96 × 5 = 480 480 × 6 = 2880 = ? |
|
| 88. |
1). 4462). 4563). 4154). 425 |
|
Answer» 4, 4 × 5 - 1= 19 19 × 4 - 1 = 75 75 × 3 - 1 = 224 224 × 2 - 1 = 447 447 × 1 - 1 = 446 |
|
| 89. |
700, 674, 611, 487, 272, ?1). 1702). -703). -714). 40 |
|
Answer» The pattern of given series is: ⇒ 700, ⇒ 674 = 700 – 33 + 1, ⇒ 611 = 674 – 43 + 1, ⇒ 487 = 611 – 53 + 1, ⇒ 272 = 487 – 63 + 1, ⇒ ? = 272 – 73 + 1, ⇒ ? = -70 Thus, the missing number is - 70 |
|
| 90. |
1, 5, 11, 19, 29, 40, 55, 711). 402). 553). 194). 71 |
|
Answer» The GIVEN series is in following pattern: 1 1 + 2 × 2 = 5 5 + 2 × 3 = 11 11 + 2 × 4 = 19 19 + 2 × 5 = 29 29 + 2 × 6 = 41 ≠ 40 41 + 2 × 7 = 55 55 + 2 × 8 = 71 So, the wrong term is 40. |
|
| 91. |
1). 232). 223). 254). 27 |
|
Answer» 8 × 3 = 24 24 ÷ 2 = 12 12 × 3 = 36 36 ÷ 2 = 18 18 × 3 = 54 54 ÷ 2 = (27) |
|
| 92. |
1). 2112). 2123). 2154). 218 |
|
Answer» The pattern of GIVEN series is: →3 + 7 = 10, →10 + 10 (7 + 3) = 20, →20 + 19 (10 + 9) = 39, →85 + 127 (46 + 81) = 212 ⇒??= 212
|
|
| 93. |
1). 227202). 2593). 184). 2096 |
|
Answer» The pattern of the given problem is: 144 = 26 × 6 – 12 590 = 144 × 4 + 14 1164 = 590 × 2 – 16 |
|
| 94. |
17, 21, 30, 46, 71, ?1). 1052). 1073). 1004). 115 |
|
Answer» ⇒ 17 + 22 = 21 ⇒ 21 + 32 = 30 ⇒ 30 + 42 = 46 ⇒ 46 + 52 = 71 ⇒ 71 + 62 = 107 ∴ Answer is 107 |
|
| 95. |
1). 222). 103). 214). 14 |
|
Answer» The PATTERN of the GIVEN problem is: 9 = 20 × 0.5 - 1 8 = 9 × 1 - 1 11 = 8 × 1.5 - 1 21 = 11 × 2 - 1 = ? |
|
| 96. |
1). 32). 53). 16 at 5th position4). 15 |
|
Answer» 3 = 12 × 0.25 ⇒ 5 = 10 × 0.5 ⇒ 8 = 8 × 1 ⇒ 15 ≠ 6 ×? 2 (not following the logic USED in the series) ⇒ 16 = 4 × 4 ⇒ 16 = 2 × 8 The logic is that the first number is decreasing by value 2 and the number MULTIPLIED to it, is getting doubled after each term. ∴ 15 is the wrong term in the series. |
|
| 97. |
1). 162). 263). 154). 25 |
|
Answer» ⇒ 4 × 2 – 2 = 6 ⇒ 6 × 3 – 2 = 16 = ? ⇒ 16 × 4 – 2 = 62 ⇒ 62 × 5 – 2 = 308 |
|
| 98. |
5000, 6655, 8640, ?, 137201). 432002). 109853). 27444). 22972 |
|
Answer» 103 × 5 = 5000 113 × 5 = 6655 123 × 5 = 8640 133 × 5 = 10985 143 × 5 = 13720 |
|
| 99. |
3, 5, 13, 19, 31, 41, ?1). 522). 553). 574). 61 |
|
Answer» The pattern is as FOLLOWS; ⇒ 3 = 12 + 1 + 1 ⇒ 5 = 22 + 2 - 1 ⇒ 13 = 32 + 3 + 1 ⇒ 19 = 42 + 4 - 1 ⇒ 31 = 52 + 5 + 1 ⇒ 41 = 62 + 6 - 1 ⇒ 57 = 72 + 7 + 1 = ? ∴ ? = 57 |
|