InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
In right angled `DeltaABC`, `BDbotAC`. If `AD=4`, `DC=9`, then find `BD`. |
|
Answer» In `DeltaABC`, `ABC=90^(@)`…..(Given) seg `Bdbot` hypotenuse `AC`. `:.` by the theorem of geometric mean, `BD^(2)=ADxxDC` `:.BD^(2)=4xx9` `:.BD^(2)=36` `:.BD=6`……(Taking square roots of both the sides) |
|
| 2. |
Find the side and perimeter of a square whose diagonal is `10cm`. |
|
Answer» Let `square ABCD` be the given square. `AC=10cm` Let the side of the square be `x cm` In `DeltaABC`, `/_ABC=90^(@)`………(Angle of a square) `:.` by Pythagoras theorem, `AC^(2)=AB^(2)+BC^(2)` `:.10^(2)=x^(2)+x^(2)` `:.100=2x^(2)` `{:( :.x^(2)=(100)/(2), :. x^(2)=50, :. x=5sqrt(2)):}` `:.AB=5sqrt(2)cm`. `:.` side of square is `5sqrt(2)cm`. Perimeter of a square `=4xx` side `=4xx5sqrt(2)` `=20sqrt(2)cm` |
|
| 3. |
In the figure, `AD=17`, `AB=10`, `BC=15`. `/_ABC=/_BCD=90^(@)` seg `AE bot` side `CD` then find the length of `(i) AE` `(ii) DE` `(iii) DC`. |
|
Answer» In `square ABCE`, `/_ABC=/_BCE=/_CEA=90^(@)`…….(Given) `:./_EAB=90^(@)`…….(Remaining angle of a quadrilateral) `:. Square ABCE` is rectangle. `(i) :.AE=BC`……(Opposite sides of rectangle are equal) `:.AE=15` `(ii)` In `DeltaDEA`, `/_DEA=90^(@)` `:.` by Pythagoras theorem, `AD^(2)=AE^(2)+ED^(2)` `:.17^(2)=15^(2)+ED^(2)` `:.ED^(2)=17^(2)-15^(2)` `:.ED^(2)=289-225` `:.ED^(2)=64` `:.ED=8` `(iii) CE=AB` .......(Opposite sides of rectangle are equal) `:.CE=10` `CD=CE+ED`.......`(C-E-D)` `:.CD=10+8` `:.CD=18` |
|
| 4. |
If `Delta ABC ` be an equilateral triangle and `AD _|_BC`, then `AD^(2)` =A. `(3)/(2) DC^(2)`B. `2DC^(2)`C. `3DC^(2)`D. `4DC^(2)` |
| Answer» Correct Answer - C | |
| 5. |
ABC is an isosceles triangle of which `AC=BC` and `AB^(2) = 2AC^(2)`. Then value of `/_C ` will be -A. `30^(@)`B. `90^(@)`C. `45^(@)`D. `60^(@)` |
| Answer» Correct Answer - B | |
| 6. |
A person at first travels 28m east from a certain place and then he travels `sqrt(57)`m south of it. The distance of the person from the starting point will beA. `(28+sqrt(57))m`B. 29 mC. `(28-sqrt(57))m`D. None of these |
| Answer» Correct Answer - b | |