Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Probability density function (pdf).

Answer»

Probability density function (pdf): Let ‘ X ’ be a continuous random variable taking values in the interval [a, b], then, A function f(x) is said to be the probability density function of the continuous random variable ‘ X ’, if it satisfies the following conditions :

  •  f(x) ≥ 0 for all ‘ X’ in the interval [a, b] .
  • For two distinct numbers c & d in the interval [a, b]:

P(c ≤ X ≤ d) = (Area under the probability curve between ordinates at X =c and X=d).

  • Total area under the curve is 1. i.e. , P(- ∞ < x < ∞) = 1 .
2.

Write down the formulae of all Mathematical Expectations:

Answer»
  • E(X) = XΣX.P (X) 
  • E(a) = a, 
  • E(aX) = a E(X) and 
  • E(aX+b) = aE(X)+b.
3.

Write down the Formulae of Variances:

Answer»
  • Var(X)= {E(X2 )-[E(X)]2},
  • V (a)=0,
  • V(aX)=a2 V(X)
  • V(aX+b)=a2V(X), and S.D.(X)= √v(x).
4.

If E(X)=3 and E(X2)=45, find the value of S.D.

Answer»

We know S.D(x)

5.

If V(X) = 4 then find V(2X).

Answer»

V(2x) = 22V(x) 

= 4 (4) = 16; 

Since V(aX) 

= a2 V(X).

6.

If E(X+Y) =7 and E(X) =4, then find the value of E(Y).

Answer»

We know that E(X+Y) = E(X) + E(Y) ; 

7 = 4 + E(y) 

E(y) = 7 – 4 = 3.

7.

If E(X)= 2, then find the value of E(-x/4).

Answer»

Given E(-x/4) 

= E(-1/4. x) 

=-1/4.E(X) 

= -1/4. 2 

=-1/2 since E(aX) 

= a E(X)

8.

If V(X) = 5 then find V(-5X).

Answer»

V(-5X) 

= (5)2V(x) 

= 25(5) 

= 125; 

Since V(aX)

=a2V(X).

9.

If E(X) = 4, E(X2) = 25, find V(5X – 9).

Answer»

V(5x-9)this is of the type V(aX+b)=a2V(X)

V(5x-9) = 52. V(x)

Here V(X) = E(X2) – [E(x)]2 ;

= 25 – 42 = 25 – 16 = 9

∴ V(5×-9) = 52 . V(x) = 25(9) = 225

10.

If V(x)=1.6, then find V(2X – 5).

Answer»

V(2X-5) = 22 V(x) 

= 4 (1.6) 

= 6.4; 

Since V(aX+b)=a2 V(X),

11.

If E(X) = 3 and E(Y) = 5, then find E(3X+2Y), E(3X -Y)

Answer»

E(3X + 2Y) = 3 E(x) + 2 E(y) = 3(3) + 2(5) = 9 + 10=19 

E(3X – Y) = 3 E(X) + (-1) E(Y) = 3(3)- 5 = 9 – 5 = 4

12.

If E(X)=2/5, find E(5x/3).

Answer»

Given E(5x/3) 

= E(5/3.x) 

= 5/3.E(x) 

= 5/3.2/5 

= 2/3

13.

If E(X) = 2, find the value of E(3X – 6).

Answer»

E(3X – 6) 

= 3E(x) – 6 

= 3(2) – 6 

= 6 – 6 

= 0

14.

If X is a random variable and E(X) =1.5, then what is the value of E(3 + 4X)?

Answer»

E(3 + 4X) 

= E(4x + 3) 

= 4.E(x) + 3 

= 4.(1.5) + 3 

= 6 +3 = 9 

since E(ax+b) 

= aE(x)+b.

15.

f X and Y are two independent random variable, E(XY)=10 and E(X)= 4, then what is the value of E(Y)?

Answer»

We know for any two independent random variables: 

E(XY) = E(X)E(Y);

10 = 4 E(Y); E(Y)= 10/4 = 2.5

16.

If E(X) = 5, E(Y) = 2, E(XY) = 11, then find Cov(X,Y).

Answer»

We know that Cov(X, Y) = E(XY) – E(X).E(Y)

= 11 – (5) (2)=11 -10= 1.

17.

Define continuous random variable.

Answer»

A random variable which assumes all the possible values in its range is called a continuous random variable.

18.

Define probability distribution.

Answer»

A systematic presentation of the values taken by a random variable with respective probabilities is called the probability distribution of a random variable’.

19.

Define Mathematical expectation of a random variable/Mean of random variable.

Answer»

Let ‘X’ be a discrete random variable which can takes the values x1, x2, x3,… ,xn with respective probabilities p1, p2,p3,… , pn then, the mathematical expectation of ‘ X ’ is:E(X) = x1p1 + x2 P2 + x3 P3 + – + xnPn

Then E(X) = Σ x p(x) ;it is also called as mean of discrete random variable (X)

20.

State Multiplication of expectation.

Answer»

Statement: Let X and Y be two independent random variables with respective expectations E(X) and E(Y). Then expectation of the product of these random variables is; E(XY) = E(X) E(Y).

21.

Write down the Formula of Co-Variance:

Answer»

Cov(X, Y) =E(XY) – E(X).E(Y),

22.

Define Random variable.

Answer»

Random variable is a function which assigns a real number to every sample point in the sample space.

23.

If x is a discrete random variable and let a, b be two constants, show that 1. E(a) = a 2. E(ax) = aE(x) 3. E(ax + b) = aE(x) + b 4. Var (a) = 0 5. Var (ax) = a2 Var (x) 

Answer»

Proof: From the definitions of probability mass function and mathematical expectation

1. E(a) = Σa .P(a) = a. ΣP(x) = a.1 = a. 

∵ ΣP(x) = 1

2. E(ax) = Σax P(x) = aΣx P(x) = a. E(x) 

∵Σx P(x) = E(x)

3. E(ax + b) = E(ax + b). P(x) Removing bracket

= Σax. P(x) + Σb.P(x) = aΣx . P(x) + bΣP(x)

= a. E(x) + b. 1 = aE(x) + b

4. Var (a) = E[a – E(a)]2

∴ V(x) = E[x – E(x)]2

= E[a – a]2 = E(0) = 0

5. Var (an) = E[ax – E(ax)]2 = E[ax – aE(x)]2

∴E(ax) = aE(x)

= a2E(x – E(x)]2 = a2 Var (x).

24.

For a random variable X, E(X2 ) = 50 and V(X) =14, then what is E(X)?

Answer»

We know that V(X) = E(X2 )-[E(x)]2

14 = 50-[E(x)]2

[E(x)]2 = 50 – 14 = 36

Squaring on both sides, we get E(x) =√36 = 6

25.

Define discrete random variable.

Answer»

A random variable ‘ X ’ which takes the specified values x1 x2,…,xn with a respective probabilities p1, p2,….., p1 is a discrete random variable.

26.

For a random variable V(X) = 4. Find V(3X +4) and V(-3X).

Answer»

V(3X+4) = 32 V(x) 

= 9 (4) 

= 36;

V(-3X) = (-3)2 V(x) 

= 9 (4) 

= 36; 

Since V(aX+b)

=a2 V(X),

27.

State Addition theorem expectation.

Answer»

Statement: Let X and Y be two random variables with respective expectations E(X) and E(Y). Then, E(X + Y)=E(X) + E(Y).