 
                 
                InterviewSolution
 Saved Bookmarks
    				This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. | Two convex lenses of focal length `f_1` and `f_2` are mounted coaxially separated by a distance. If the power of the combination is zero, the distance between the lenses isA. `|f_1-f_2|`B. `f_1+f_2`C. `(f_1f_2)/(|f_1-f_2|)`D. `(f_1f_2)/(f_1-f_2)` | 
| Answer» Correct Answer - B `d:` distance between lenses `(1)/(F)=(1)/(f_1)+(1)/(f_2)-(d)/(f_1f_2)` `P=(1)/(F)=0` `(d)/(f_1f_2)=(1)/(f_1)+(1)/(f_2)=(f_2+f_1)/(f_1f_2)` `d=f_1+f_2` | |
| 2. | if `mu_2=._au_g=(3)/(2),mu_3=._au_(omega)=(4)/(3)`, magnitude of radii of carvature of lens are 10 cm and 20 cm find focal length of lens if rays are incident from (a) air and (b) water, | 
| Answer» (a) If rays are incident from air side `mu_1=1,mu_2=``_au_g=(3)/(2),mu_3=``_au_(omega)=(4)/(3),R_1=10cm,R_2=-20cm` `(mu_3)/(f_2)=(mu_2-mu_2)/(R_1)+(mu_3-mu_2)/(R_2)` `((4)/(3))/(f_2)=((3)/(2)-1)/(10)+((4)/(3)-(3)/(2))/(-20)=(1)/(20)+(1)/(120)=(7)/(120)` `(4)/(3f_2)=(7)/(120)impliesf_2=(160)/(7)cm` (b). If rays are incident from water side `mu_1=``_au_(omega)=(4)/(3),mu_2=``_au_g=(3)/(2)` `mu_3=1,R_1=20cm,R_2=-10cm` `(mu_3)/(f_1)=(mu_2-mu_1)/(R_1)+(mu_3-mu_2)/(R_2)` `(1)/(f_1)=((3)/(2)-(4)/(3))/(20)+(1-(3)/(2))/(-10)` `=(1)/(120)+(1)/(20)=(7)/(120)` `f_1=(120)/(7)cm` | |
| 3. | A thin lens of focal length + 12 cm is immersed in water `(mu = 1.33).` What is its new focal length ? | 
| Answer» `f_a=12cm`,`_au_g=(3)/(2)`,`._au_(omega)=(4)/(3)` `(1)/(f_a)=(._au_g-1)((1)/(R_1)-(1)/(R_2))` …(i) `(1)/(f_(omega))=(._(omega)u_g-1)((1)/(R_1)-(1)/(R_2))` ..(ii) `(i)//(ii)` `(f_(omega))/(f_a)=((._au_(g)-1))/((._(omega)u_(g)-1))=((._au_(g)-1))/(((._au_(g))/(._au_(omega))-1))=((3//2)-1)/(((3//2)/(4//3)-1))=(((1)/(2)))/(((1)/(8)))=4` `f_(omega)=4f_(a)=4xx12=48cm` | |
| 4. | A lens forms a sharp image on a screen. On inserting a parallel sided glass slab between the lens and the screen, it is found necessary to move the screen a distance `d` away the lens in order for the image to be sharp again. If the refractive index of the material of the slab is `mu`, the thickness of the slab isA. `mud`B. `(d)/(mu)`C. `(mu-1)/(mu)d`D. `(mud)/(mu-1)` | 
| Answer» Correct Answer - D Shift`=t(1-(1)/(mu))=d` `t=(d)/((1-(1)/(mu)))=(mud)/((mu-1))` | |
| 5. | A real image of an object is formed by a conex lens at the bottom of an empty beaker. The beaker is now filled with a liquid of refractive index 1.4 to a depth of 7 cm. In order to get the image again at the bottom the beaker shoud be movedA. downward by 2 cmB. upward by 2 cmC. downward by 3 cmD. upward by 3 cm | 
| Answer» Correct Answer - A Shift by water tank `7(1-(1)/(1.4))=2cm` away from lens | |
| 6. | A thin convergent glass lens `(mu_g=1.5)` has a power of `+5.0D.` When this lens is immersed in a liquid of refractive index `mu_1,` it acts as a divergent lens of focal length `100 cm.` The value of `mu_1` isA. `(4)/(3)`B. `(3)/(2)`C. `(5)/(3)`D. `2` | 
| Answer» Correct Answer - C `(1)/(f_a)=((3)/(2)-1)((1)/(R_1)-(1)/(R_2))` … (i) `(1)/(f_l)=((3//2)/(._amu_l)-1)((1)/(R_1)-(1)/(R_2))` (i)/(ii) `(f_l)/(f_a)=((3//2-1))/(((3//2)/(._amu_l)-1))` `f_(1)=(100)/(P)=(100)/(5)=20cm` `f_(l)=-100cm` `(-100)/(20)=(1//2)/((3/(2_(a)mu_(l))-1))` `(3)/(2_(a)mu_(l))-1=-(1)/(10)implies(3)/(2_(a)mu_(l))=(9)/(10)` `._amu_l=(15)/(9)=(5)/(3)` | |
| 7. | Focal length of a convex lense in air is `10cm`. Find its focal length in water. Given that `mu_g=3//2` and `mu_w=4//3`.A. 2.5 cmB. 5 cmC. 20 cmD. 40 cm | 
| Answer» Correct Answer - D `(1)/(f_1)=(._amu_g-1)((1)/(R_1)-(1)/(R_2))` …(i) `(1)/(f_(omega))=(._(omega)mu_g-1)((1)/(R_1)-(1)/(R_2))` ….(ii) `f_(omega)/(f_(a))=((._amu_(g)-1))/((._omegamu_(g)-1))=((._amu_(g)-1))/(((._amu_(g))/(._amu_omega)-1))` `(f_(omega))/(10)=(((3)/(2)-1))/(((3//2)/(4//3)-1))=4impliesf_(omega)=40cm` | |
| 8. | A point object `O` is kept at a distance `OP=u` The radius of curvature of the spherical surface APB is `CP=R` The refractive index of the media are `n_1` and `n_2` which are as shown in the diagram . Then, (A) if `n_1gtn_2`, image is virtual for all values of u (B) if `n_2=2n_1` image is virtual when `Rgtu` (C) The image is real for all values of `u`, `n_1` and `n_2` here, the correct statements is/areA. only (B)B. both (A) and (B)C. only (A)D. (A),(B) and (C) | 
| Answer» Correct Answer - B `(n_2)/(v)-(n_1)/(u)=(n_2-n_1)/(R)` `u=-u,R=R` `(n_2)/(v)-(n_1)/(-u)=(n_2-n_1)/(R)` `(n_2)/(v)=(n_2-n_1)/(R)-(n_1)/(u)` if `n_1gtn_2,(n_2)/(v)=-veimpliesv=-ve` (A) is O.K. if `n_1=2n_1,(n_2)/(v)=(n_1)/(R)-(n_1)/(u)=-ve`, if `Rgtu`. (B) is O.K. | |
| 9. | The graps shows the variation of magnification `m` produced by as convex lens with the image distance `v`. The focal length of the lens isA. `(b)/(c)`B. `(c)/(b)`C. `a`D. `a,(b)/(c)` | 
| Answer» Correct Answer - D For lens `(1)/(v)-(1)/(u)=(1)/(f)implies(1)/(v)-(1)/(-u)=(1)/(f)` `(v)/(v)+(v)/(u)=(v)/(f)implies(v)/(u)=(v)/(f)-1` `m=(v)/(f)-1impliesu=(1)/(f)x-1` Comparing with `y=Mx+C` Slope `M=(1)/(f)=(b)/(c)impliesf=(c)/(b)` | |
| 10. | A convex lens of focal length 40 cm a concave lens of focal length 40 and a concave lens of focal length 15 cm are placed in contact. The power of this combination of are placed in contact. The power of this combination in diopters isA. `+1.5`B. `-1.5`C. `+6.67`D. `-6.67` | 
| Answer» Correct Answer - D `(1)/(F)=(1)/(f_1)+(1)/(f_2)+(1)/(f_3)` `=(1)/(40)+(1)/(-40)+(1)/(-15)=-(1)/(15)` `P=(100)/(F(cm))=-(100)/(15)=-(20)/(3)=-6.67D` | |
| 11. | Two thin lenses of powers `2D` and `3D` are placed in contact. An object is placed at a distance of 30 cm from the combination The distance in cm of the image from the combination isA. 30B. 40C. 50D. 60 | 
| Answer» Correct Answer - D `P=P_1+P_2=5D,F=(100)/(P)=(100)/(5)=20cm` `(1)/9v-(1)/(-30)=(1)/(20)` `(1)/(v)=(1)/(20)-(1)/(30)=(1)/(60)impliesv=60cm` | |
| 12. | A cardsheet divided into squares each of size `1 mm^(2)` is being viewed at a distance of `9 cm` through a magnifying glass (a conerging lens of focal length `10 cm`) held close to the eye. (a) What is the magnification produced by the lenas ? How much is the area of each square to the virtual image ? (b) What is the angular magnification (magnifying power) of the lens ? ( c) Is the magnification in (a) equal to the magnifying power in (b) ? ExplainA. `1cm^2`B. `0.81cm^2`C. `0.27^2`D. `0.60cm^2` | 
| Answer» Correct Answer - A `u=-9cm,f=10cm` `(1)/(v)-(1)/(u)=(1)/(f)implies(1)/(v)-(1)/(-9)=(1)/(10)` `(1)/(v)=(1)/(10)-(1)/(9)=(-1)/(90)` `v=-90cm` `m=(v)/(u)=(-90)/(-9)=10` `(A_i)/(A_O)=m^2implies(A_i)/(I)=(10)^2` `A_i=100m^2=1cm^2` | |