InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
A bullet travelling horizontally looses `1//20^(th)` of its velocity while piercing a wooden plank. Then the number of such planks required to stop the bullet isA. 6B. 9C. 11D. 13 |
|
Answer» Final velocity after passing through a plank `v=(19u)/(20)` So, `v^(2)=u^(2)+2as,2as=-(39)/(400)u^(2)` if bullet passes through n plands and stoopped. `0=u^(2)+2as,u^(2)+2a(ns).` `n=-(u^(2))/(2as)=(400)/(39)=10.3` `"So,"(n=1)` |
|
| 2. |
The density of carbon dioxide gas at `0^(@)C` and at pressure `1.0 xx 10^(5) Nm^(-2)` is `1.98 kg m^(-3)`. Find the rms velocity of its molecules at `0^(@)C` and also at `30^(@)C`, assuming pressure to be constant.A. `423m//s`B. `300m//s`C. `100m//s`D. `500m//s` |
|
Answer» `v_(ms)=sqrt((3P)/(P))=sqrt((3RT)/(M_(W))` From I.G. equation `P.(M)/(P)=(M)/M_(W)RT_(1)` `M_(W)=(pRT_(1))/(P)` `v_(ms)=sqrt((3RT_(f))/(pRT_(1))xxP` `=sqrt(3xx10^(5)xx(273+50))/(1.98xx273)` `=423m//s` |
|
| 3. |
A particle at the end of a spring executes simple harmonic motion with a period `t_(1)` while the corresponding period for another spring is `t_(2)` if the oscillation with the two springs in series is T thenA. `T=t_(1)+t_(2)`B. `T^(2)=t_(1)^(2)+t_(2)^(2)`C. `T^(1)=t_(1)^(-1)+t_(2)^(-1)`D. `T^(2)=t_(1)^(-2)+t_(2)^(-2)` |
|
Answer» `t_(1)=2pisqrt((m)/(k_(1)))" " ....(1),` `t_(2)=2pisqrt((m)/(k_(2)))" " ....(2),` when springs are in series then `T=2pisqrt(((m)/(k_(1)k_(2)))/(k_(1)+k_(2)))=2pisqrt(m(k_(1)+k_(2)))/(k_(1)k_(2))` squaring and adding (1) and (2) we get `t_(1)^(2)+t_(1)^(2)=4pi^(2)(m)/k_(1)+4pi^(2)(m)/k_(2)` `=4pi^(2)m(k_(1)+k_(2)/(k_(1)k_(2)))` or `t_(1)^(2)+t_(2)^(2)=T^(2)` |
|
| 4. |
Find the amount of work done to increase the temperature of one mole of ideal gas by `30^(@)C` .if its is expanding under the condition `V prop R^(2//3) (R = 8.31 J//mol -K):`A. `16.62J`B. `166.2J`C. `1662J`D. `1.662J` |
|
Answer» `PV=mRT" " T` Process `VpropT^(2//3)` or `TpropV^(3//2)` For `PV^(x)=" constant" PVpropV^(3//2)` `PV^(-1//2)` constant `W=(nR)/(x-1)(dt)` `=(1R)/(-1-(1)/(2))(-30)=(60R)/(3)=20R=166.2` |
|
| 5. |
One end of a copper rod of length 1.0 m and area of cross-section `10^(-3)` is immersed in boiling water and the other end in ice. If the coefficient of thermal conductivity of copper is `92 cal//m-s-.^(@)C` and the latent heat of ice is `8xx 10^(4) cal//kg`, then the amount of ice which will melt in one minute isA. `9.2xx10^(-3)kg`B. `8xx10^(-3)kg`C. `6.9xx10^(-3)kg`D. `5.4xx10^(-3)kg` |
|
Answer» `H=(DeltaQ)/(Deltat)=(KA(0_(H)-0_(L)))/l` `DeltaQ=mL` `:.(mL)/(Deltat)=(KA(0_(H)-0_(L)))/l` `:.m=(KA(0_(H)-0_(L))Deltat)/(lL)` `=(92xx10^(-3)xx100xx60)/(1xx80xx10^(-3))` `=6.9xx10^(-3)kg` |
|
| 6. |
The diagram (figure) shows a venturimeter, through which water is flowing the speed of water at X is 2cm/s. the speed of water at Y (taking `g=1000cm//s^(2)`) isA. `23cms^(-1)`B. `23cms^(-1)`C. `101cms^(-1)`D. `1024cms^(-1)` |
|
Answer» `(1)/(2)pv_(1)^(2)+P_(1)=(1)/(2)pv_(2)^(2)+P_(2)` `P_(1)-P_(2)=(1)/(2)p(v_(2)^(2)-v_(1)^(2))` `hgd=(1)/(2)p(v_(2)^(2)-v_(1)^(2))` `v_(2)=32m//sec.` |
|
| 7. |
As per given figure to complete the circular loop what should be the radius if initial height is 5 m A. 4mB. 3mC. 2.5mD. 2m |
|
Answer» `sqrt2gh=sqrt5gr` `r=(2h)/(5)=(2xx5)/(5)=2m` `P=m(vdv)/(ds).v` `underset(v)overset(2_(v))intmv^(2)dv=underset(o)overset(r)intPds` `s=(7mv^(3))/(3P)` |
|
| 8. |
In the arrangement shown in figure two equal masses (each m) hung light cords wrapped around a uniform solid cylinder of mass M and radius R. The cylinder is free to roate about a harizontal axis. If the system is released from rest then, the tension in each cord is- A. `(Mmg)/(4m+M)`B. `(Mmg)/(m+M)`C. `(Mmg)/(M+3m)`D. `(Mmg)/(2m+M)` |
|
Answer» `mg-T=ma" "....(1)` `2TxxR=Ialpha=MR^(2)xx(a)/(R)` `Ma=2T` `T=(Ma)/(2)" " ....(2)` `mg-(Ma)/(2)=marArrmg=((Ma)/(2)+m)a` `a=(mg)/((M)/(2)+m):.T=(mMg)/(2((M)/(2)+m))` |
|