InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If ` vec a , vec b , vec c`are three mutually perpendicular vectors of equalmagniltgude, prove that ` vec a+ vec b+ vec c`is equally inclined with vectors ` vec a , vec b , a n d vec cdot`also find the angle. |
|
Answer» `abs(veca)=abs(vecb)=abs(vecc)=lamda` `veca*vecb=vecb*vecc*vecc*veca=0` `abs(veca+vecb+vecc)^2=(veca+vecb+vecc)*(veca+vecb+vecc)` `=abs(veca)^2+0+0+abs(vecb)^2+abs(vecc)^2` `=lambda^2+lambda^2+lambda^2` `=3lambda^2` `abs(veca+vecb+vecc)=sqrt3lambda` `costheta_1=(veca*(veca+vecb+vecc))/(abs(veca)abs(veca+vecb+vecc))=lambda^2/(lambdasqrt3lambda)=1/sqrt3=theta_1=cos^(-1)(1/sqrt3)` Similarly, `theta_1=theta_2=theta_3=cos^(-1)(1/sqrt3)` |
|
| 2. |
If ` vec a`and ` vec b`are two vectors such that `| vec a|=4,| vec b|=3`and ` vec adot vec b=6`. Find the angle between ` vec a`and ` vec b`. |
|
Answer» We know, `veca*vecb = |veca|*|vecb|cos theta` Putting given values, `6 = 4*3*costheta` `=>cos theta = 1/2` `=>theta = 60^@` So, the angle between `veca` and `vecb` is `60^@`. |
|
| 3. |
Find the angles of a triangle whose verticesare `A(0,-1,-2),B(3,1,4)`and `C`(5,7,1). |
|
Answer» Here, `vec(AB) = vecB - vecA = 3hati+2hatj+6hatk` `vec(BC) = 2hati+6hatj-3hatk` `vec(AC) = 5hati+8hatj+3hatk` `|vec(AB)| = sqrt(3^2+2^2+6^2) = 7` `|vec(BC)| = sqrt(32^2+6^2+(-3)^2) = 7` `|vec(AC)| = sqrt(5^2+8^2+3^2) = 7sqrt2` Now, `vec(AB)*vec(BC) = 6+12-18 = 0` It means, `AB` and `BC` are perpendicular. `:./_ABC = 90^@` Also, as `|vec(AB)| = |vec(BC)| ` `:. /_ACB = /_BAC` As, `/_ABC = 90^@` `:. /_ACB = /_BAC = 1/2*(180-90)^@ = 45^@.` |
|
| 4. |
If ` hat a`and ` hat b`are unit vectors inclined at an angle `theta`, then prove that`costheta/2=1/2| hat a+ hat b|``tantheta/2=1/2|( hat a- hat b)/( hat a+ hat b)|` |
|
Answer» Here, `veca` and `vecb` are unit vectors. `:. |hata| = |hatb| = 1` (i) `|hata+hatb|^2 = (hata)^2+(hatb)^2+2hata*hatb` `=|hata|^2+|hatb|^2+2|hata||hatb|cos theta` `=1^2+1^2+2(1)(1)costheta` `=>|hata+hatb|^2=2(1+costheta)` `=>|hata+hatb|^2/2 = 1+costheta` `=>|hata+hatb|^2/2 = 2cos^2(theta/2)` `=>|hata+hatb|^2/4 = cos^2(theta/2)` `=>cos (theta/2) =1/2 |hata+hatb| ->(1)` (ii) `|hata-hatb|^2 = (hata)^2+(hatb)^2-2hata*hatb` `=|hata|^2+|hatb|^2-2|hata||hatb|cos theta` `=1^2+1^2-2(1)(1)costheta` `=>|hata-hatb|^2=2(1-costheta)` `=>|hata-hatb|^2/2 = 1-costheta` `=>|hata-hatb|^2/2 = 2sin^2(theta/2)` `=>|hata-hatb|^2/4 = sin^2(theta/2)` `=>sin (theta/2) =1/2 |hata-hatb| ->(2)` Now, dividing (2) by (1), `sin (theta/2)/cos (theta/2) = |hata-hatb|/|hata+hatb|` `=> tan (theta/2) = |hata-hatb|/|hata+hatb|` |
|