Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

451.

Which of the following is a singleton set ?A. The set of all the months in a year having exactly 30 days.B. The set of all the days in a week.C. The set of all the natural satellites of the earth in the solar system.D. The set of all the intersecting points of two parallel lines in a plane.

Answer» Correct Answer - C
(a) all months in a year having exactly 30 days are April, June, September and November.
`:.` It is not a singleton set.
(b) In a week, we have 7 days.
`:.` It is not a singleton set.
(c) The natural satellite of the earth in the solar system is moon.
`:.` It is singleton set.
(d) Parallel lines in a plane never intersect.
`:.` The set of all intersecting points of two parallel lines in a plane is not a singleton set.
Hence, the correct option is (c).
452.

Which of the following is an infinite set ?A. `{x : x" is a prime, "x lt 10}`B. `{ x : x" is a vowel in the word MATHEMATICS"}`C. `{x : x" is a natural number, "2015 lt x lt 2016}`D. `{x : x in Z, x" is a non-negative integer"}`

Answer» Correct Answer - D
(a) `{x : x in N, x" ia a prime, "x lt 10}`
`={2, 3, 5, 7}`
It is finite set.
(b) {x : x is a vowel in the word}
`={A, E, I}`
(c) `{x : x in N, 2015 lt x lt 2016}`
There is no natural number between 2015 and 2016.
`:.` It is an empty set.
`:.` Hence, it is a finite set.
(d) `{x : x in Z," x is a non-negative integer"}`
`={0, 1, 2, 3,...}`
It is an infinite set.
Hence, the correct option is (d)
453.

If A = {a, b, c, d, e, f}, B = {c, e, g, h} and C = {a, e, m, n}, find:(i) A ∪ B (ii) B ∪ C (iii) B ∪ C (iv) C ∩ A (vi) A ∩ B

Answer»

Given; A = {a, b, c, d, e, f}, B = {c, e, g, h} and C = {a, e, m, n} 

(i) A ∪ B = {a, b, c, d, e, f, g, h} 

(ii) B ∪ C = {a, c, e, g, h, m, n} 

(iii) B ∪ C = {a, c, e, g, h, m, n} 

(iv) C ∩ A = {a, e} 

(vi) A ∩ B = {c, e}

454.

If A = {1, 2, 3, 4, 5}, B = {4, 5, 6, 7, 8}, C = {7, 8, 9, 10, 11} and D = {10, 11, 12, 13 , 14}. Find: i. A ∪ B ii. A ∪ C iii. B ∪ C iv. B ∪ D v. A ∪ B ∪ C vi. A ∪ B ∪ D vii. B ∪ C ∪ D viii. A ∩ (B ∪ C) ix. (A ∩ B) ∩ (B ∩ C) x. (A ∪ D) ∩ (B ∪ C).

Answer»

Note: In general X ∪ Y = {a: a ϵ X or a ϵ Y} 

X ∩ Y = {a:a ϵ X and a ϵ Y}. 

i. A ∪ B = {x: x ϵ A or x ϵ B} 

= {1, 2, 3, 4, 5, 6, 7, 8} 

ii. A ∪ C = {x: x ϵ A or x ϵ C} 

= {1, 2, 3, 4, 5, 7, 8, 9, 10, 11} 

iii. B ∪ C = {x: x ϵ B or x ϵ C} 

= {4, 5, 6, 7, 8, 9, 10, 11} 

iv. B ∪ D = {x: x ϵ B or x ϵ D} 

= {4, 5, 6, 7, 8, 10, 11, 12, 13, 14} 

v. A ∪ B = {x: x ϵ A or x ϵ B} 

= {1, 2, 3, 4, 5, 6, 7, 8} A ∪ B ∪ C 

= {x: x ϵ A ∪ B or x ϵ C} 

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} 

vi. A ∪ B = {x: x ϵ A or x ϵ B} 

= {1, 2, 3, 4, 5, 6, 7, 8} A ∪ B ∪ D 

= {x: x ϵ A ∪ B or x ϵ D} 

= {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14} 

vii. B ∪ C = {x: x ϵ B or x ϵ C} 

= {4, 5, 6, 7, 8, 9, 10, 11} 

B ∪ C ∪ D = {x: x ϵ B ∪ C or x ϵ D} 

= {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} 

viii. B ∪ C = {x: x ϵ B or x ϵ C} 

= {4, 5, 6, 7, 8, 9, 10, 11} 

A ∩ B ∪ C = {x:x ϵ A and x ϵ B ∪ C}. 

= {4, 5} 

ix. (A ∩ B) = {x:x ϵ A and x ϵ B}. 

= {4, 5} 

(B ∩ C) = {x:x ϵ B and x ϵ C} 

= {7, 8} 

(A ∩ B) ∩ (B ∩ C) = {x:x ϵ (A ∩ B) and x ϵ (B ∩ C)}. 

= ϕ 

x. A ∪ D = {x: x ϵ A or x ϵ D} 

= {1, 2, 3, 4, 5, 10, 11, 12, 13, 14}. 

B ∪ C = {x: x ϵ B or x ϵ C} 

= {4, 5, 6, 7, 8, 9, 10, 11} 

(A ∪ D) ∩ (B ∪ C) 

= {x:x ϵ (A ∪ D) and x ϵ (B ∪ C)}. 

= {4, 5, 10, 11}.

455.

If A = {1, 2, 3, 4, 5}, B = {4, 5, 6, 7, 8} and C = {10, 11, 12, 13, 14}, find:(i) A ∪ B (ii) B ∪ C (iii) A ∪ C (iv) B ∪ D (v) (A ∪ B) ∪ C (vi) (A ∪B) ∩C (vii) (A ∩ B) ∪D (viii) (A ∩ B) ∪ (B ∩ C) (ix) (A ∩ C) ∩ (C ∪ D

Answer»

Given; A = {1, 2, 3, 4, 5}, B = {4, 5, 6, 7, 8} and C = {10, 11, 12, 13, 14}

(i) A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}

(ii) B ∪ C = {4, 5, 6, 7, 8, 10, 11, 12, 13, 14} 

(iii) A ∪ C = {1, 2, 3, 4, 5, 10, 11, 12, 13, 14} 

(iv) B ∪ D 

(v) (A ∪ B) ∪ C = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14} 

(vi) (A ∪B) ∩C = Φ or {} 

(vii) (A ∩ B) ∪D = 

(viii) (A ∩ B) ∪ (B ∩ C) = Φ or {} 

(ix) (A ∩ C) ∩ (C ∪ D =

456.

From the sets given below, select equal sets:A = {2, 4, 8, 12}, B = {1, 2, 3, 4}, C = {4, 8, 12, 14}, D = {3, 1, 4, 2}E = {–1, 1}, F = {0, a}, G = {1, –1}, H = {0, 1}

Answer»

A = {2, 4, 8, 12}; B = {1, 2, 3, 4}; C = {4, 8, 12, 14}

D = {3, 1, 4, 2}; E = {–1, 1}; F = {0, a}

G = {1, –1}; A = {0, 1}

It can be seen that

8 ∈ A, 8 ∉ B, 8 ∉ D, 8 ∉ E, 8 ∉ F, 8 ∉ G, 8 ∉ H

⇒ A ≠ B, A ≠ D, A ≠ E, A ≠ F, A ≠ G, A ≠ H

Also, 2 ∈ A, 2 ∉ C

∴ A ≠ C

3 ∈ B, 3 ∉ C, 3 ∉ E, 3 ∉ F, 3 ∉ G, 3 ∉ H

∴ B ≠ C, B ≠ E, B ≠ F, B ≠ G, B ≠ H

12 ∈ C, 12 ∉ D, 12 ∉ E, 12 ∉ F, 12 ∉ G, 12 ∉ H

∴ C ≠ D, C ≠ E, C ≠ F, C ≠ G, C ≠ H

4 ∈ D, 4 ∉ E, 4 ∉ F, 4 ∉ G, 4 ∉ H

∴ D ≠ E, D ≠ F, D ≠ G, D ≠ H

Similarly, E ≠ F, E ≠ G, E ≠ H, F ≠ G, F ≠ H, G ≠ H

The order in which the elements of a set are listed is not significant.

∴ B = D and E = G

Hence, among the given sets, B = D and E = G.

457.

Are the following pair of sets equal? Give reasons.(i) A = {2, 3}; B = {x: x is solution of x2 + 5x + 6 = 0}(ii) A = {x: x is a letter in the word FOLLOW}; B = {y: y is a letter in the word WOLF}

Answer»

(i) A = {2, 3}; B = {x: x is a solution of x2 + 5x + 6 = 0}
The equation x2 + 5x + 6 = 0 can be solved as: x(x + 3) + 2(x + 3) = 0
(x + 2)(x + 3) = 0 ; x = –2 or x = –3
∴ A = {2, 3}; B = {–2, –3}
∴ A ≠ B
(ii) A = {x: x is a letter in the word FOLLOW} = {F, O, L, W}
B = {y: y is a letter in the word WOLF} = {W, O, L, F}
The order in which the elements of a set are listed is not significant.
∴ A = B

458.

In the following, state whether A = B or not:(i) A = {a, b, c, d}; B = {d, c, b, a}(ii) A = {4, 8, 12, 16}; B = {8, 4, 16, 18}(iii) A = {2, 4, 6, 8, 10}; B = {x: x is positive even integer and x ≤ 10}(iv) A = {x: x is a multiple of 10}; B = {10, 15, 20, 25, 30 ...}

Answer»

(i) A = {a, b, c, d}; B = {d, c, b, a}

The order in which the elements of a set are listed is not significant.

∴ A = B

(ii) A = {4, 8, 12, 16}; B = {8, 4, 16, 18}

It can be seen that 12 ∈ A but 12 ∉ B.

∴ A ≠ B

(iii) A = {2, 4, 6, 8, 10}

B = {x: x is a positive even integer and x ≤ 10}

= {2, 4, 6, 8, 10}

∴ A = B

(iv) A = {x: x is a multiple of 10}

B = {10, 15, 20, 25, 30 …}

It can be seen that 15 ∈ B but 15 ∉ A.

∴ A ≠ B

459.

Are the following pair of sets equal? Give reasons.(i) A = {2, 3}; B = {x: x is solution of x2 + 5x + 6 = 0}(ii) A = {x: x is a letter in the word FOLLOW}; B = {y: y is a letter in theword WOLF}

Answer»

(i) A = {2, 3}; B = {x: x is a solution of x2 + 5x + 6 = 0}

The equation x2 + 5x + 6 = 0 can be solved as: x(x + 3) + 2(x + 3) = 0

(x + 2)(x + 3) = 0 ; x = –2 or x = –3

∴ A = {2, 3}; B = {–2, –3}

∴ A ≠ B

(ii) A = {x: x is a letter in the word FOLLOW} = {F, O, L, W}

B = {y: y is a letter in the word WOLF} = {W, O, L, F}

The order in which the elements of a set are listed is not significant.

∴ A = B

460.

List all the elements of the following sets:(i) A = {x: x is an odd natural number}(ii) B = {x: x is an -1/2<x<9/2 integer,}(iii) C = {x: x is an x2 ≥4 integer,}(iv) D = {x: x is a letter in the word “LOYAL”}(v) E = {x: x is a month of a year not having 31 days}(vi) F = {x: x is a consonant in the English alphabet which proceeds k}.

Answer»

(i) A = {x: x is an odd natural number} = {1, 3, 5, 7, 9 …}

( ii ) B = { x : x is an integer; -1/2 <n<9/2}

It can be seen that  -1/2= -0.5 and 9/2= 4.5

={0,1,2,3,4}

(iii) C = {x: x is an integer; }

It can be seen that

(–1)2 = 1 ≤ 4; (–2)2 = 4 ≤ 4; (–3)2 = 9 > 4

02 = 0 ≤ 4

12 = 1 ≤ 4

22 = 4 ≤ 4

32 = 9 > 4

C = {–2, –1, 0, 1, 2}

(iv) D = (x: x is a letter in the word “LOYAL”) = {L, O, Y, A}

(v) E = {x: x is a month of a year not having 31 days}

= {February, April, June, September, November}

(vi) F = {x: x is a consonant in the English alphabet which precedes k}

= {b, c, d, f, g, h, j}

461.

Write the following sets in the set-builder form:(i) (3, 6, 9, 12) (ii) {2, 4, 8, 16, 32}(iii) {5, 25, 125, 625} (iv) {2, 4, 6 …}(v) {1, 4, 9 … 100}

Answer»

(i) {3, 6, 9, 12} = {x: x = 3n, n∈ N and 1 ≤ n ≤ 4}

(ii) {2, 4, 8, 16, 32}

It can be seen that 2 = 21, 4 = 22, 8 = 23, 16 = 24, and 32 = 25.

∴ {2, 4, 8, 16, 32} = {x: x = 2n, n∈ N and 1 ≤ n ≤ 5}

(iii) {5, 25, 125, 625}

It can be seen that 5 = 51, 25 = 52, 125 = 53, and 625 = 54.

∴ {5, 25, 125, 625} = {x: x = 5n, n ∈ N and 1 ≤ n ≤ 4}

(iv) {2, 4, 6 …}

It is a set of all even natural numbers.

∴ {2, 4, 6 …} = {x: x is an even natural number}

(v) {1, 4, 9 … 100}

It can be seen that 1 = 12, 4 = 22, 9 = 32 …100 = 102.

∴ {1, 4, 9… 100} = {x: x = n2, n ∈ N and 1 ≤ n ≤ 10}

462.

Two finite sets have m and n elements. The number of subsets of the first set is 112 more than that of the second set. The values of m and n are, respectively,A. 4, 7B. 7, 4C. 4, 4D. 7, 7

Answer»

B. 7, 4

Given: Two finite sets have m and n elements.

To find: value of m and n

Formula used:

The number of subsets of a set containing x elements is given by 2x

According to question:

2m – 2n = 112

⇒ 2n (2m-n – 1) = 16 × 7

⇒ 2n (2m-n – 1) = 24 × 7

On comparing:

2n = 24 and 2m-n – 1 = 7

⇒ n = 4 and 2m-n = 8

⇒ 2m-n = 23

⇒ m – n = 3

⇒ m – 4 = 3

⇒ m = 7

Hence, value of m and n is 7 and 4 respectively

463.

If A and B are finite sets, such that `A sub B`, then `n(A uu B)` is equal to `"………"`

Answer» If A and B are two finite sets such that `A sub B`, then `n(A uu B) = n(B)`.
464.

Let A and B be two sets such that n (A) = 16, n (B) = 25. Then, n (A ⋂B) is equal to A. 30 B. 50 C. 5 D. none of these

Answer»

In this question we cannot find n(A⋂B) as we haven’t required values and information about their union or about universal set. 

So, 

correct answer is D

465.

If A = {1, 2, 3, 4, 5}, then the number of proper subsets of A is A. 120 B. 30 C. 31 D. 32

Answer»

Here, 

n(A) = 5 

⇒n(P(A) ) = 25 = 32 

So,

A has total 32 subsets but one of them is A itself. 

∴ Proper subsets of A are 32 -1 = 31.

466.

In set-builder method the null set is represented by A. { } B. Φ C. {x : x ≠ x} D. {x : x = x}

Answer»

We know x≠x is false for any x. 

∴ the set builder form for null set is {x:x≠x}.

467.

How to describe a set?

Answer»

There are two methods of describing a set. 

1. Roster or tabular form: In the roster form, we list all the members of the set within brackets { } and separate them by commas. 

2. Set-Builder form: In the set-builder form, we list the property or properties satisfied by all the elements of the set. 

  • N: The set of all-natural numbers. 
  • Z: The set of all integers. 
  • Q: The set of all rational numbers. 
  • M: The set of real numbers. 
  • Z+: The set of positive integers. 
  • Q+: Set of positive rational numbers. 
  • R+: The set of positive real numbers.
468.

Define a set.

Answer»

A collection of well-defined objects is called a set. The objects in a set are called its members or elements. We denote sets by capital letters A, B, C, X. Y, Z, etc. If ‘a’ is an element of a set A, we write, a ∈ A, which means that a belongs to A or that a is an element of If ‘a ’ does not belong to A, we write, a ∉ A.

469.

If A = {1, 2, 3}, B = {2, 3, 4}, then A – B = A) {4} B) {1} C) {2, 3} D) {1, 2, 3, 4}

Answer»

Correct option is  B) {1}

470.

If A = {1,2, 3}, B = {2, 3,4}, then B – A = A) {1, 2, 3, 4} B) {2, 3} C) {4} D) {1}

Answer»

Correct option is  C) {4}

471.

A = {1, 2, 3, 4, 5, 6}; B = {2, 4, 6, 8, 10}. Find the intersection of A and B.

Answer»

Given sets are

A = {1, 2, 3, 4, 5, 6} and B = {2, 4, 6, 8, 10} 

A ∩ B = {1, 2, 3, 4, 5, 6} ∩ {2, 4, 6, 8, 10} = {2, 4, 6}

472.

Every student should take 9 triangular sheets of paper and one plate. Numbers from 1 to 9 should, be written on each triangle Everyone should keep some numbered triangles in the plate. Now the triangles in each plate form a subset of the set of numbers from 1 to 9.Look at the plates of Sujata, Hameed, Mukta, Nandini, Joseph with the numbered triangles. Guess the thinking behind selecting these numbers.Hence write the subsets in set builder form.

Answer»

Sujata:

S = {x | x = 2n- 1, n ∈ N, x < 9}

Hameed:

: f H = {x | x = 2n, n ∈ N, x < 9} 

Mukta: 

M = {x | x = n , n ∈ N, x ≤ 9} 

Nandini:

 N = {x | x ∈ N, x ≤ 9} 

Joseph: 

J = {x | x is a prime number between 1 and 9}

473.

Write the following sets in roster form. i) A = {x: x is a natural number greater than 50 but smaller than 100} ii) B = {x : x is an integer, x2 = 4} iii) D = {x : x is a letter in the word “LOYAL”}

Answer»

i) A = {51, 52, 53, ……. , 98, 99} 

ii) B = {+2, -2} 

iii) D = {L, O, Y, A}

474.

If n(A) = 7, n(B) = 13, n(A ∩ B) = 4, then n(A ∪ B) = ?

Answer»

n(A ∪ B) = n(A) + n(B) – n(A ∩ B) 

= 7 + 13 – 4 

n(A ∪ B) = 16

475.

If n(A) = 35, n(B) = 25, n(A ∪ B) = 45, then n(A ∩ B) = A) 20 B) 25 C) 10 D) 15

Answer»

Correct option is D) 15

476.

Express the following statements using symbols.i) The elements ‘x’ does not belong to ‘A’. ii) ‘d’ is an element of the set ‘B’. iii) ‘1’ belongs to the set of Natural numbers N. iv) ‘8′ does not belong to the set of prime numbers P.

Answer»

i) x ∉ A 

ii) d ∈ B 

iii) 1 ∈ N 

iv) 8 ∉ P

477.

Write the following sets in roster form. i) B = {x : x is a natural number smaller than 6}. ii) C = {x : x is a two-digit natural number such that the sum of its digits is 8}. iii) D = {x : x is a prime number which is a divisor of 60}. iv) E = {x : x is an alphabet in BETTER}.

Answer»

i) B = {1, 2, 3, 4, 5} 

ii) C = {17, 26, 35, 44, 53, 62, 71} 

iii) D = {5, 3} 

iv) E = {B, E, T, R}

478.

If n(A) = 20, n(B) = 44 , n(A ∩ B) = 13 then n(A ∪ B) = A) 24 B) 51 C) 22 D) 59

Answer»

Correct option is B) 51

479.

If A = {1, 2, 3, 4}; B = {1, 2, 3, 4, 5, 6, 7, 8}, then find A ∪ B, A ∩ B. What do you notice about the result?

Answer»

Given sets are 

A = {1, 2, 3, 4} and B = {1, 2, 3, 4, 5, 6, 7, 8} 

A ∪ B = {1, 2, 3, 4} ∪ {1, 2, 3, 4, 5, 6, 7, 8} = {1, 2, 3, 4, 5, 6, 7, 8} = B 

A ∩ B = {1, 2, 3, 4} ∩ {1, 2, 3, 4, 5, 6, 7, 8} = {1, 2, 3, 4} = A 

If A ⊂ B, then A ∪ B = B and A ∩ B = A

480.

State whether the following statements are true or false. Justify your answer. i) 5 ∉ set of prime numbers ii) S = {5, 6, 7} implies 8 ∈ S. iii) -5 ∉ W where ‘W’ is the set of whole numbers. iv) 8/11 ∈ Z where ‘Z’ is the set of integers.

Answer»

i) False 

ii) False 

iii) True 

iv) False

481.

If n(A) = 20, n(B) = 44, n(A ∪ B) = 51, then n(A ∩ B) = A) 24 B) 22 C) 13 D) 39

Answer»

Correct option is  C) 13

482.

If A = {1, 2, 3, 4}, B = {2, 4, 6, 8}, C = {3, 4, 5, 8}, then A – (B ∪ C) = A) {1} B) μ C) A D) Φ

Answer»

Correct option is  A) {1}

483.

Set (A’)’ is equal to A) {x / x ∉ μ, x ∉ A }B) {x / x ∉ A, x ∈ μ}C) {x / x ∈ μ, x ∈ A}D) {x/x ∈ A, x ∉ μ}

Answer»

Correct option is C) {x / x ∈ μ, x ∈ A}

484.

If μ = {1, 2, 3, 4, 5, 6, 7, 8} A = {1, 2, 4, 5, 6} then A’ = A) {3, 7} B) {3, 7, 8} C) {7, 8} D) {5, 6, 8}

Answer»

Correct option is  B) {3, 7, 8}

485.

If A = {3, 5, 7, 9, 4}, B = {1, 3, 5}, C = {2, 4, 6, 7} then A – (B ∩ C) = A) C B) A C) B D) Φ

Answer»

Correct option is  B) A

486.

If A = {3, 5, 7, 9}, B = {1, 3, 5}, μ = {1, 2, 3, 4, 5 , 7, 9} then (A ∪ B)’ = A) {2, 4, 6, 8} B) {1, 2, 4, 7, 9} C) Φ D) {2, 4}

Answer»

Correct option is  D) {2, 4}

487.

Dual of the statement (A ∩ B) ∪ (A ∩ \(\bar{B}\)) = A ∩ μ is ……………….A) (A ∪ B) ∪ (A ∪ \(\bar{B}\)) = A ∪ Φ B) (A ∪ B) ∪ (A ∪ \(\bar{B}\)) = A ∪ Φ C) (A ∪ B) ∪ (A ∪ \(\bar{B}\)) = A ∪ μ D) (A ∩ B) ∩ (A ∩ \(\bar{B}\)) = A ∪ Φ

Answer»

Correct option is A) (A ∪ B) ∪ (A ∪ \(\bar{B}\)) = A ∪ Φ

488.

A De-Morgan’s law is A) A ∪ B = B ∪ A B) A – (B ∩ C) = (A – B) ∪ (A – C) C) A ∪ (B ∪ C) = (A ∪ B) ∪ C D) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Answer»

Correct option is B) A – (B ∩ C) = (A – B) ∪ (A – C)

489.

Dual of the statement “A -(B ∪ C) = (A – B) ∩ (A – C)” is A) A – (B ∩ C) = (A – B) ∪ (A – C) B) A – (B ∩ C) = (A – B) ∩ (A – C) C) A – (B ∪ C) = (A – B) ∪ (A – C) D) A – (B ∪ C) = (A – B) ∩ (A – C)

Answer»

Correct option is A) A – (B ∩ C) = (A – B) ∪ (A – C)

490.

The region representing A Δ B is A) 1, 3 B) 1 C) 3 D) 1, 2

Answer»

Correct option is A) 1, 3

491.

The region represented by(A ∪ B ∪ C)’ is A) 7 B) 8 C) 1, 2, 3, 4, 5, 6, 7 D) 7, 8

Answer»

Correct option is C) 1, 2, 3, 4, 5, 6, 7

492.

In the above figure, the region represented by (A ∩ B) ∩ C is A) 4, 5, 6, 7 B) 4, 5, 6 C) 7 D) 4, 6, 7

Answer»

Correct option is C) 7

493.

The region representing (A ∪ B)’ is A) 1, 2, 3 B) 2C) 4 D) 1, 3, 4

Answer»

Correct option is C) 4

494.

In the above figure, the region represented by A is A) 1, 2, 3 B) 1, 4, 6, 7 C) 2, 4, 5, 7 D) 1

Answer»

Correct option is B) 1, 4, 6, 7

495.

The region representing A only isA) 1, 2 B) 2, 3 C) 1 D) 3

Answer»

Correct option is C) 1

496.

The region representing B – A isA) 2, 3 B) 3 C) 1, 2 D) 1

Answer»

Correct option is B) 3

497.

The region representing (A ∩ B)’ isA) 1, 2, 3 B) 4 C) 2 D) 1, 3, 4

Answer»

Correct option is D) 1, 3, 4

498.

Let R and S be the sets defined as follows:R = {x ∈ Z | x is divisible by 2}S = {y ∈ Z | y is divisible by 3}then, R ∩ S = φ

Answer»

False

Since 6 is divisible by both 3 and 2.

Thus, R ∩ S ≠ φ

499.

Fill in the blanks:If A and B are two finite sets, then n(A) + n(B) is equal to ___________

Answer»

Since n(A ∪ B) = n (A) + n (B) – n (A ∩ B) 

So n(A) + n (B) = n (A ∪ B) + n (A ∩ B)

500.

If A is a finite set containing n element, then number of subsets of A is __________

Answer»

If A is a finite set containing n element, then number of subsets of A is 2n