

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
51. |
The value of $\sqrt[3]{\frac{7}{875}}$ is equal to :1). $\frac{1}{3}$2). $\frac{1}{15}$3). $\frac{1}{4}$4). $\frac{1}{5}$ |
Answer» | |
52. |
Simplify : [0.9 - {2.3 - 3.2 - (7.1 - 5.4- 3.5)}]1). 0.182). 1.83). 04). 2.6 |
Answer» | |
53. |
The value of $3\frac{1}{2}-\left[2\frac{1}{4}+\left\{1\frac{1}{4}-\frac{1}{2}\left(1\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right\}\right]$ is1). $\frac{1}{2}$2). $2\frac{1}{2}$3). $3\frac{1}{2}$4). $9\frac{1}{2}$ |
Answer» | |
54. |
Number of digits in the square root of 62478078 is.1). 42). 53). 64). 3 |
Answer» RIGHT ANSWER for this QUESTION is OPTION 1 | |
55. |
The value of $\sqrt[3]{\frac{0.2\times 0.2\times 0.2 + 0.04\times 0.04\times 0.04 }{0.4\times 0.4\times 0.4 + 0.08\times 0.08\times 0.08}}$is :1). 0.52). 0.253). 0.754). 0.125 |
Answer» | |
56. |
The digit at the unit's place in the square-root of 15876 is :1). 82). 63). 44). 2 |
Answer» 6 | |
57. |
If'+' means '$\div $', 'x' means '-' , '$\div $' means 'x' and '-' means '+' what will be the value of the following expression$9 + 3\div 4 - 8\times 2$ = 1). $6\frac{1}{4}$2). $6\frac{3}{4}$3). $-1\frac{3}{4}$4). 18 |
Answer» | |
58. |
$\sqrt{(0.798)^{2} + 0.404\times0.798 + (0.202)^{2}}+1$ = 21). 02). 23). 1.5964). 0.404 |
Answer» 2 is the correct answer as per the SSC answer KEY | |
59. |
The sum of the perfect squares between 120 and 300 is1). 14002). 12963). 10244). 1204 |
Answer» | |
60. |
The sum of $\sqrt{0.01}+ \sqrt{0.81} + \sqrt{0.21} + \sqrt{0.0009}$ is1). 2.12). 2.133). 2.034). 2.11 |
Answer» | |
61. |
$\sqrt[3]{4\frac{12}{125}}$ is equal to :1). 1.42). 1.63). 1.84). 2.4 |
Answer» OPTION 2 is the RIGHT ANSWER | |
62. |
The value of $\sqrt{\frac{(0.03)^{2} + (0.21)^{2} + (0.065)^{2}}{(0.003)^{2} + (0.021)^{2} + (0.0065)^{2}}}$is1). 0.12). 103). $10^{2}$4). $10^{3}$ |
Answer» This question was asked some where in PREVIOUS year papers of ssc, and CORRECT answer was 10 |
|
63. |
$\sqrt{\frac{4\frac{1}{7}- 2\frac{1}{4}}{3\frac{1}{2}+1\frac{1}{7}}+\frac{2}{2+\frac{1}{2+\frac{1}{5-\frac{1}{5}}}}}$is equal to1). 12). 43). 34). 2 |
Answer» OPTION option 1 is the CORRECT ANSWER | |
64. |
The slmplliled value of $\frac{4}{15}$ of $\frac{5}{8} \times 6 \div 15 - 10$ is1). 62). 33). 54). 4 |
Answer» RIGHT ANSWER for this QUESTION is OPTION 1 | |
65. |
The least number by which 20184 must be multiplied so as to make the product a perfect square is1). 22). 33). 54). 6 |
Answer» | |
66. |
The square root of $\frac{2+\sqrt{3}}{2}$ is :1). $\pm \frac{1}{\sqrt{2}}(\sqrt{3}+1)$2). $\pm \frac{1}{\sqrt{2}}(\sqrt{3}-2)$3). None of these4). $\pm \frac{1}{2}(\sqrt{3}-1)$ |
Answer» OPTION 3 : SEEMS CORRECT | |
67. |
The value of $\frac{\sqrt{0.441}}{\sqrt{0.625}}$ is equal to:1). 0.0482). 0.843). 0.484). 0.084 |
Answer» OPTION 2 is the ANSWER | |
68. |
What is the square root of 0.091). 0.32). 0.033). 0.0034). 3 |
Answer» OPTION 1 is the RIGHT ANSWER | |
69. |
The least fraction to be subtracted from the expression $\frac{3\frac{1}{4}-\frac{4}{5}of \frac{5}{6}}{4\frac{1}{3}+\frac{1}{5}-\left(\frac{3}{10}+21\frac{1}{5}\right)}$to make it an integer.1). $\frac{1}{2}$2). $\frac{5}{6}$3). $\frac{1}{4}$4). $\frac{3}{10}$ |
Answer» | |
70. |
Simplify : $\frac{\frac{5}{3}\times \frac{7}{51} of \frac{17}{5}-\frac{1}{3} }{\frac{2}{9}\times \frac{5}{7} of \frac{28}{5}-\frac{2}{3}}$1). $\frac{1}{2}$2). 43). 24). $\frac{1}{4}$ |
Answer» 4 : SEEMS CORRECT | |
71. |
5-[4-{3-(3-3-6)}] is equal to :1). 102). 63). 44). 0 |
Answer» it from previous YEAR ssc PAPERS, option 1 is the RIGHT ANSWER |
|
72. |
The simplified value of $\sqrt{900}+\sqrt{0.09}-\sqrt{0.000009}$ is1). 30.272). 30.2973). 30.0974). 30.197 |
Answer» This QUESTION was asked some where in PREVIOUS year PAPERS of ssc, and correct ANSWER was 30.297 |
|
73. |
The value of $1+\frac{1}{1+\frac{2}{3+\frac{4}{5}}}$ is1). $\frac{12}{29}$2). $\frac{8}{19}$3). $\frac{48}{29}$4). $\frac{2}{19}$ |
Answer» CORRECT ANSWER is: $\FRAC{8}{19}$ | |
74. |
$\sqrt[3]{\sqrt{0.000064}}$ is equal to :1). 0.00022). 0.0023). 0.024). 0.2 |
Answer» HELLO, 0.2 is CORRECT | |
75. |
$\left(\sqrt[3]{1000}+\sqrt[3]{0.008}-\sqrt[3]{0.125}\right)$is equal to :1). 9.72). 9.973). 9.994). 9.9997 |
Answer» CORRECT ANSWER is: OPTION 1 | |
76. |
The simplification of $\frac{5}{3+\frac{3}{1-\frac{2}{3}}}$gives1). 52). $\frac{5}{3}$3). $\frac{5}{12}$4). $\frac{3}{5}$ |
Answer» | |
77. |
The square root of $(7+3\sqrt{5})(7-3\sqrt{5})$ is1). 42). $\sqrt{5}$3). $3\sqrt{5}$4). 2 |
Answer» OPTION 4 : - 2 | |
78. |
The simplified value of $\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$ is1). $\sqrt{2}$2). $\frac{1}{\sqrt{2}}$3). $\sqrt{3}-\sqrt{2}$4). 0 |
Answer» | |
79. |
$\sqrt[3]{\frac{19}{513}}$ is equal to :1). $\frac{1}{9}$2). $\frac{1}{3}$3). $\frac{1}{\sqrt{27}}$4). $\frac{1}{\sqrt{3}}$ |
Answer» | |
80. |
The square root of : $\frac{(0.75)^{3}}{1-0.75}+\left[0.75+(0.75)^{2}+1\right]$ is :1). 42). 33). 24). 1 |
Answer» | |
81. |
$\frac{3.25\times 3.20 - 3.20\times 3.05}{0.064}$ is equal to1). 12). $\frac{1}{2}$3). $\frac{1}{10}$4). 10 |
Answer» | |
82. |
If the sum of the squares of three consecutive natural numbers is 110, then the smallest of these natural numbers is:1). 82). 63). 74). 5 |
Answer» | |
83. |
$\frac{1}{2}+\left\{4\frac{3}{4}-\left(3\frac{1}{6}-2\frac{1}{3}\right)\right\}$ is equal to1). $3\frac{2}{3}$2). $1\frac{1}{4}$3). $4\frac{5}{12}$4). $1\frac{2}{3}$ |
Answer» | |
84. |
$\frac{(100 - 1)(100 - 2)(100 - 3). . .(100- 200)}{100\times 99\times 98\times . . .\times 3\times 2\times 1}$is equal to1). $\frac{100}{99\times 98\times 97\times . . .\times 3\times 2\times 1}$2). $-\frac{1}{99\times 98\times 97\times . . .\times 3\times 2\times 1}$3). 04). $\frac{2}{99\times 98\times 97\times . . .\times 3\times 2\times 1}$ |
Answer» ANSWER for this QUESTION is OPTION 3 | |
85. |
The value of $\sqrt{11.981+7\sqrt{1.2996}}$ is closest to1). 5.12). 4.93). 4.54). 4.1 |
Answer» HELLO, 4.9 is CORRECT | |
86. |
The least number, by which 1944 must be multiplied to make the result a perfect cube, is1). 22). 33). 64). 13 |
Answer» 3 SEEMS CORRECT. | |
87. |
The least number that must be subtracted from 63520 to make the result a perfect square is :1). 162). 203). 244). 30 |
Answer» OPTION option 1 is the CORRECT ANSWER | |
88. |
What number must be added to the expression $16a^{2} -12a$ to make it a perfect square 1). $\frac{9}{4}$2). $\frac{11}{2}$3). $\frac{13}{2}$4). 16 |
Answer» | |
89. |
Which smallest number must be added to 2203 so that we get a perfect square 1). 12). 33). 64). 8 |
Answer» | |
90. |
$\sqrt[3]{\frac{72.9}{0.4096}}$ is equal to :1). 0.56252). 5.6253). 1824). 13.6 |
Answer» OPTION 2 is the RIGHT ANSWER | |
91. |
If $\frac{547.527}{0.0082}$ = x, then the value of $\frac{547527}{82}$is1). 10x2). 100x3). $\frac{x}{100}$4). $\frac{x}{10}$ |
Answer» CORRECT ANSWER is: OPTION 4 | |
92. |
$8.7-\left[7.6-\left\{6.5 - \left(5.4 -\overline{4.3-2}\right)\right\}\right]$ is simplified to :1). 2.52). 3.53). 4.54). 5.5 |
Answer» OPTION 3 : SEEMS CORRECT | |
93. |
The value of $\sqrt{\frac{(0.1)^{2} + (0.01)^{2} + (0.009)^{2}}{(0.01)^{2} + (0.001)^{2} + (0.0009)^{2}}}$is1). $10^{2}$2). 103). 0.14). 0.01 |
Answer» | |
94. |
The sum of the squares of 2 numbers is 146 and square-root of one of them is $\sqrt{5}$. The cube of the other number is1). 11112). 12213). 13314). 1441 |
Answer» | |
95. |
$\frac{2}{2+\frac{2}{3+\frac{2}{3+\frac{2}{3}}}\times0.39}$is simplified to1). $\frac{1}{3}$2). 23). 64). None of these |
Answer» OPTION 4 is the correct ANSWER as PER the answer KEY | |
96. |
Simplify : $\left[3\frac{1}{4}+\left\{1\frac{1}{4}-\frac{1}{2}\left(2\frac{1}{2}-\overline{\frac{1}{4}-\frac{1}{6}}\right)\right\}\right]+\frac{1}{2} of 4\frac{1}{3}$1). 182). 363). 394). 78 |
Answer» OPTION option 2 is the CORRECT ANSWER | |
97. |
Simplification of $\frac{(3.4567)^{2} -(3.4533)^{2}}{0.0034}$ yields the result :1). 6.912). 73). 6.814). 7.1 |
Answer» RIGHT ANSWER for this QUESTION is OPTION 1 | |
98. |
Which smallest number must be added to 710 so that the sum is a perfect cube 1). 292). 193). 114). 21 |
Answer» | |
99. |
If 2 = $x+\frac{1}{1+\frac{1}{3+\frac{1}{4}}}$, then the value of x is :1). $\frac{18}{17}$2). $\frac{21}{17}$3). $\frac{13}{17}$4). $\frac{12}{17}$ |
Answer» ANSWER for this QUESTION is OPTION 2 | |
100. |
The value of $\frac{0.125 + 0.027}{0.25 - 0.15 + 0.09}$ is1). 0.22). 0.253). 0.34). 0.8 |
Answer» OPTION 4 : SEEMS CORRECT | |