Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Given that \(\sqrt 6= 2.55,\) then the value of \(\sqrt\frac23+\sqrt[3]\frac32\) is(a) 4.48 (b) 4.49 (c) 4.5 (d) 4.675

Answer»

(d) 4.492

\(\sqrt\frac23+3\times\sqrt\frac32 = \frac{\sqrt2}{\sqrt3}+3\times\frac{\sqrt3}{\sqrt2}\)

\(\frac{\sqrt2\times\sqrt3}{\sqrt3\times\sqrt3} + 3\times\frac{\sqrt3\times\sqrt2}{\sqrt2\times\sqrt2}\)

(Rationalising the denominator)

\(\frac{\sqrt6}{3}+\frac{3\times\sqrt6}{2}=\frac{2\sqrt6+9\sqrt6}{6}\)

\(\frac{11\sqrt6}{6}=\frac{11\times2.45}{6}=\frac{26.95}{6}\) = 4.492

2.

Choose the correct answer. The number \(\sqrt{14+6\sqrt5} + \sqrt{14-6\sqrt5}\)(a) is not a rational number (b) is a rational number ≥ 14 (c) simplifies to 5 (d) simplifies to 6. (Take positive root only)

Answer»

(d) simplifies to 6. (Take positive root only)

\(\sqrt{14+6\sqrt5} = \sqrt{9+5+2\times3\times\sqrt5}\)

\(\sqrt{(3)^2+(\sqrt5)^2+2\times3\sqrt5}\)

\(\sqrt{(3+\sqrt5)^2}\) = 3 + \(\sqrt5\)

Similarly, \(\sqrt{14+6\sqrt5} = ​3 - \sqrt5 ​\)

∴ \(\sqrt{14+6\sqrt5} + \sqrt{14-6\sqrt5} ​\) =  3 + \(\sqrt5\) +  3 - \(\sqrt5\) = 6.

∴ (d) is the correct answer.

3.

The value of \(\sqrt{5\sqrt{5\sqrt{5}}}......is\)(a) 1 (b) 2.5 (c) 5 (d) 25

Answer»

(c) 5

Let x = \(\sqrt{5\sqrt{5\sqrt{5}}}......is\)

⇒ x = \(\sqrt{5x}\) ⇒ x2 = 5x

⇒ x- 5x = 0 ⇒ x (x - 5) = 0 ⇒ 0 or 5

Neglecting x = 0, we have x = 5.

4.

What are surds ?

Answer»

Irrational numbers of the type \(\sqrt{2},\) \(\sqrt{3},\) \(\sqrt{5},\) \(\sqrt{17},\) ...... which are square roots of positive rational ____ numbers that cannot be expressed as squares of any rational numbers are called surds.

Similarly, \(\sqrt[3]{2}\)\(\sqrt[3]{4}\)\(\sqrt[3]{19}\) etc., are numbers which are the cube roots of positive rational numbers that cannot be expressed as the cubes of any rational numbers and so are surds.

Definition : If x is a positive rational number and n is a positive integer such that x1/n , i.e., \(\sqrt[n]{x}\) is irrational, then

\(\sqrt[n]{x}\) is called a surd or radical of order n.

\(\sqrt[5]{25}\) is a surd of order 5.

5.

Comparison of surds.

Answer»

(a) If a and b are surds of the same order, say n, then \(\sqrt[n]{a}\) > \(\sqrt[n]{b}\) if a > b. 

 For example,  \(\sqrt[5]{27}\) > \(\sqrt[5]{20}\) as 27 > 20. 

(b) If the given surds are not of the same order, then first convert them to surds of the same order and then compare. For example, to compare \(\sqrt[3]{2}\) and \(\sqrt[4]{3}\), we take the LCM of the orders, i.e., 3 and 4, i.e., 12.

Now, \(\sqrt[3]{2}\)  = \(\sqrt[12]{2^4}\) = \(\sqrt[12]{16}\)             (∴ \(\sqrt[3]{2}\)  = \(2^\frac{1}{3}\) = \(2^\frac{4}{12}\))

  \(\sqrt[4]{3}\)  = \(\sqrt[12]{3^3}\) = \(\sqrt[12]{27}\)                   (∴  \(\sqrt[4]{3}\)  = \(3^\frac{1}{4}\) = \(3^\frac{3}{12}\))

Since, 27 > 16, therefore, \(\sqrt[12]{27}\) > \(\sqrt[12]{16}\), i.e, \(\sqrt[4]{3}\) > \(\sqrt[3]{2}\).

6.

What do you mean by Rationalisation?

Answer»

Rationalisation : When surds occur in the denominator of a fraction, it is customary to rid the denominator of the radicals. The surd in the denominator is multiplied by an appropriate expression, such that the product is a rational number. The given surd and the expression by which it is multiplied are called rationalising factors of each other. 

For example,

(i) \(a^{1-\frac{1}{n}}\) is the rationalising factor of \(a^\frac{1}{n}\),as \(a^\frac{1}{n}\) \(a^{1-\frac{1}{n}}\) = \(a^{\frac{1}{n}+1-\frac{1}{n}}\) = a= a, which is a rational number. Hence, the rationalising factor of \(6^\frac{1}{5}\) is \(6^{1-\frac{1}{5}}\) = \(6^\frac{1}{5}\).

(ii) (a + √b) is the rationalising factor of (a- √b) , as, (a + √b)(a - √b) = a2 – b, which is a rational. Hence, (3 + √2) is the rationalising factor of (3 - √2) .

(3 + √2) (3 - √2) = 9 – 2 = 7

(iii) (√a + √b) is the rationalising factor of (√a + √b) as (√a + √b)(√a - √b) = (√a)- (√b)= a - b, which is a rational number.

Note: Such binominal surds as (√a + √b) and (√a - √b)which differ only in the sign connecting their terms are said to be conjugate surds.

The product of conjugate surds is always a rational.

Thus, the process of multiplication of a surd by its rationalising factor is called rationalisation.

7.

Which among the following numbers is the greatest ?\(\sqrt[3]{4},\sqrt{2},\sqrt[6]{16},\sqrt[4]{5}\)

Answer»

LCM of (3, 6, 4) = 12, Raising each given number to power 12,

∴ \(\sqrt[3]{4}=\) (4)\(\frac{1}{3}\) =  (4\(\frac{1}{3}\) )12 = 4= 256

  \(\sqrt{2}=\) (2)\(\frac{1}{2}\) =  (2\(\frac{1}{2}\) )12 = 4= 64

  \(\sqrt[6]{13}=\) (13)\(\frac{1}{6}\) =  (13\(\frac{1}{6}\) )12 = 13= 169

  \(\sqrt[4]{5}=\) (5)\(\frac{1}{4}\) =  (4\(\frac{1}{4}\) )12 = 5= 125

 \(\sqrt[3]{4}\) is the greatest.

8.

If A = 5 + 2√6, then find the value of √A + \(\frac{1}{\sqrt{A}}\).

Answer»

\(\sqrt{A}=\sqrt{5+2\sqrt6} = \sqrt{3+2+2\sqrt{3\times2}}\)

\(\sqrt{(\sqrt3)^2 + (\sqrt2)^2 + 2\sqrt3\sqrt2}\)

\(\sqrt{(\sqrt3) + (\sqrt2)^2} = \sqrt3+\sqrt2\)

∴ \(\sqrt{A} + \frac{1}{\sqrt{A}}=(\sqrt3+\sqrt2) + \frac{1}{(\sqrt3+\sqrt2)}\)

\((\sqrt3+\sqrt2) + \frac{\sqrt3-\sqrt2}{(\sqrt3+\sqrt2)(\sqrt3-\sqrt2)}\)

= (\(\sqrt3+\sqrt2\)) + \(\frac{\sqrt3-\sqrt2}{3-2} = \sqrt3+\sqrt2+\sqrt3-\sqrt2= 2\sqrt3\).