InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Find the equation of the circle which touches thelines `4x-3y+10=0a n d4x-3y-30=0`and whose centre lies on the line `2x+y=0.` |
|
Answer» `4x-3y+10=0` `4x-3y-30=0` solving the line `(2x+y=0)`and`(4x-2y+10=0)` `x=-1,y=2` Solving the line `(4x-3y-3=0)`and`(2x+y=0)` `x=3,y=-6` Distance between parallel line=d `|(10-(-30))/sqrt(16+9)|=d` `d=|(10+30)/5|` `d=8` `r=4` O is mid point of AB `(x,y)=((3-1)/2,(2-6)/2)=(1,-2)` A circle passes through center`(1,-2)` `(x-1)^2+(y+2)^2=4^2`. |
|
| 2. |
If `y=2x`is a chord of the circle `x^2+y^2-10 x=0`, find the equation of a circle with this chord asdiameter. |
|
Answer» `x^2+y^2-10x=0` `x^2(2x)^2-10x=0` `x^2+4x^2-10x=0` `5x^2-10x=0` `5x(x-2)=0` `(x-x_1)(x-x_2)+(y-y_1)(y-y_1)=0` `(x-0)(x-2)+(y-0)(y-4)=0` `x(x-2)+y(y-4)=0` `x^2+y^2-2x-4y=0`. |
|
| 3. |
If `2x^2+lambdax y^+2y^2+(lambda-4)x+6y-5=0,`is the equation of a circle, then its radius is : |
|
Answer» `2x^2+lambdaxy+2y^2+(lambda-4)x+6y-5=0` `x^2+lambda/2xy+y^2+(lambda-4)/2x+3y-5/2=0` `lambda/2=0,lambda=0` `x^2+0+y^2-2x+3y-5/2=0` `C(1,-3/2)` `r=sqrt(1+5/4+5/2)` `r=sqrt((4+9+10)/4)` `r=sqrt23/2`. |
|
| 4. |
Find the radius of the circle `(xcosalpha+ysinalpha-a)^2+(xsinalpha-ycosalpha-b)^2=k^2,ifalpha`varies, the locus of its centre is again a circle. Also,find its centre and radius. |
|
Answer» `x&cos^2alpha+y^2sin^2alpha+a^2+2xysinalphacosalpha-2aysinalpha-2axcosalpha+x^2sin^2alpha+y^2cos^2alpha+b^2-2xysinalphacosalpha+2bycosalpha-2bxsinalpha=k^2` `x^2+y^2-2x(acosalpha-bsinalpha)+2y(bcosalpha-asinalpha)+a^2+b^2-k^2=0` `r=sqrt(g^2+f^2-c)` `r=sqrt((acosalpha+bsinalpha)^2+(bcosalpha-asinalpha)^2-a^2-b^2+k^2)` `r=sqrt(a^2+b^2+0-a^2-b^2+k^2` `r=k` `x=acosalpha+bsinalpha` `y=-(asinalpha-bcosalpha)` `x^2+y^2=a^2cos^2alpha+2ab sinalphacosalpha+b^2sin^2alpha+a^2sin^2alpha-2ab sinalphacosalpha+b^2cos^2alpha` `x^2+y^2=a^2+b^2` Circle r=`sqrt(a^2+b^2` `C=(0,0)`. |
|