Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

The value of `sin12^(@)sin24^(@)sin48^(@),` isA. `cos20^(@)cos40^(@)cos60^(@)cos80^(@)`B.C. `sin20^(@)sin40^(@)sin60^(@)sin80^(@)`D. `3//15`

Answer» Correct Answer - A
152.

Statement-1: For any value of `thetane0, lim_(ntooo)cos""(theta)/(2)cos""(theta)/(2^(2))cos""(theta)/(2^(3))...cos""(theta)/(2^(n))=(sintheta)/(theta)` Statement-2: `cosAcos2Acos2^(2)A...cos2^(n-1)A=(sin2^(n)A)/(2^(n)sinA) and lim_(Ato0)(sinA)/(A)=1.`A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True.

Answer» Correct Answer - A
Clearly, two given statements are true and Statement-2 is a correct explanation for statement-1.
153.

The equaltion a `sin x+b cos x=c,` where `|c|gtsqrt(a^(2)+b^(2))` hasA. a unique solutionB. Infinite no, of solutionC. no solutionD. none of these

Answer» Correct Answer - C
We know that `|a sinx+bcos x|lesqrt(a^(2)+b^(2))"for all" x inR`
`implies|c|le sqrt(a^(2)+b^(2))`
But, `|c|gtsqrt(a^(2)+b^(2))" "["Given"]`
Hence, `a sin x+bcosx=c` does not hold for any `x in R.`
154.

The least vlaue of `(1)/(5cosx+12sinx+15),` isA. `-18`B. `1//28`C. 28D. `1//18`

Answer» Correct Answer - B
We have, `-13le 5cosx+12sin x le13 "for all"x inR`
`implies2le5 cosx+12 sinx+15le 28"for all"x inR`
`implies1/28le(1)/(5cosx+12sinx+15)is 1/28`
155.

`(1+cos56^(@)+cos58^(@) -cos66^(@))/(cos28^(@)cos29^@sin33^(@)) =`A. 2B. 3C. 4D. none of these

Answer» Correct Answer - C
156.

If `(cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))+(cos(theta_(3)+theta_(4)))/(cos(theta_(3)-theta_(4)))=0,` then `tantheta_(1)tan theta_(2)tan theta_(3)tan theta_(4)=`A. 1B. 2C. `-1`D. none of these

Answer» Correct Answer - C
157.

`(sin7theta+6sin5theta+17sin3theta+12sintheta)/(sin6theta+5sin4theta+12sin2theta)` is equal toA. `2cos theta`B. `cos theta`C. `2 sin theta`D. `sin theta`

Answer» Correct Answer - A
158.

If `sinB=1/5sin(2A+B), then (tan(A+B))/(tanA)` is equal toA. `5//3`B. `2//3`C. `3//2`D. `3//5`

Answer» Correct Answer - C
159.

The maximum value of the expression `1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta)` isA. 2B. 3C. 4D. 6

Answer» Correct Answer - A
`sin^(2)theta+3sintheta costheta+5cos^(2)theta`
`=1/2{1-cos2theta+3sin2theta+5(1+cos2theta}`
`=3+2cos2theta+3/2sin2theta`
Clearly,
`-sqrt(4+(9)/(4))le2cos2theta+3/2sin2thetalesqrt(4+(9)/(4))`
`implies-5/2le2cos2theta+3/2sin2thetale5/2`
`implies2/11le(1)/(sin^(2)theta+3sinthetacostheta+5cos^(2)theta)le2`
Hence, the maximum value of the given expression is 2.
160.

Statement -1: If `(pi)/(12)lethetale(pi)/(3),` then `sin(theta-(pi)/(4))sin(theta-(7pi)/(12))sin(theta+(pi)/(12))"lies between"-(1)/(4sqrt2)and 1/4.` Statement-2: The value of `sin thetasin((pi)/(3)-theta)sin((pi)/(3)+theta)is 1/4sin3theta.`A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True.

Answer» Correct Answer - A
We have,
`sinthetasin((pi)/(3)-theta)sin((pi)/(3)+theta)=sintheta(sin^(2)""(pi)/(3)-sin^(2)theta)`
`=sin^(2)theta((3)/(4)-sin^(2)theta)=1/4sin3theta`
So, statement-2 is true.
On replacing `thetaby(theta-(pi)/(4))` in statement-2, we get
`sin(theta-(pi)/(4))sin((7pi)/(12)-theta)sin(theta+(pi)/(12))=1/4sin(3theta-(3pi)/(4))`
`impliessin(theta-(pi)/(4))sin(theta-(7pi)/(12))sin(theta+(pi)/(12))=-1/4sin(3theta-(3pi)/(4))`
If `(pi)/(12)lethetale(pi)/(3),then (pi)/(4)le3thetalepi`
`implies-(pi)/(2)le3theta-(3pi)/(4)le(pi)/(4)`
`implies-1lesin(3theta-(3pi)/(4))le(1)/(sqrt2)`
`implies-(1)/(4sqrt2)lesin(theta-(pi)/(4))sin(theta-(7pi)/(12))sin(theta+(pi)/(12))le1/4`
So, statement-1 is also true and statement-2 is a correct explanation for statement-1.
161.

Statement -1: `sin52^(@)+sin78^(@)+sin50^(@)=4cos26^(@)cos39^(@)cos25^(@)` Statement-2: If `A+B+C=pi, then sinA+sin B+sinC=4cos""(A)/(2)cos""(B)/(2)cos""©/(2)`A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True.

Answer» Correct Answer - A
If `A+B+C=pi, then sinA+sinB+sinC`
`=2sin""(A+B)/(2)cos""(A-B)/(2)+2sin""(C)/(2)cos""(C)/(2)`
`=2cos""(C)/(2){cos""(A-B)/(2)+cos""(A+B)/(2)}=4cos""(A)/(2)cos""(B)/(2)cos""(C)/(2)`
So, statement-2 is true.
On replacing A by `52^(@),Bby78^(@)and C by 50^(@),` we obtain statement-1.
Hence, both the statements are true and statement-2 is a correct explanation for statement-1.
162.

If `sinA sinB sinC+cosAcosB=1,` then the value of sinC isA. 1B. `1//2`C. 0D. `-1`

Answer» Correct Answer - A
`As cos C le1`
`therefore sinA sinB sinC+cosAcosB lesin A sinB+cosA cosB`
`impliessin A sinBsinC+cosAcosBlecos(A-B)`
`implies1lecos(A-B)`
`impliescos(A-B) =1impliesA=B`
`thereforesinA sinBsinC+cosAcosB=1`
`impliessin^(2)A sinC+cos^(2)A=1`
This is satisfied by `sin C =1` only.
163.

If `alpha` is an acute angle and `sin(alpha/2)=sqrt((x-1)/(2x))` then `tan alpha` isA. `sqrt((x-1)/(x+1))`B. `(sqrt(x-1))/(x+1)`C. `sqrt(x^(2)-1)`D. `sqrt(x^(2)+1)`

Answer» Correct Answer - C
164.

If A, B, C be an acute angled triangle, then the minimum value of `tan^(4)A+tan^(4)B+tan^(4)C` will beA. 729B. 27C. `81sqrt3`D. none of these

Answer» Correct Answer - B
In a triangle ABC, we know that
`tanA+tanB+tanCge3sqrt3" "...(i)`
We also know that
`(tan^(4)A+tan^(4)B+tan^(4)C)/(3)ge((tanA+tanB+tanC)/(3))^(4)`
`implies(tan^(4)A+tan^(4)B+tan^(4)C)/(3)ge(sqrt3)^(4)" "["Using(i)"]`
`impliestan^(4)A+tan^(4)B+tan^(4)C ge27`
165.

If `tantheta=-4//3,` then `sintheta` isA. `-4//5"but not"4//5`B. `-4//5or 4//5`C. `4//5"but not"-4//5`D. none of these

Answer» Correct Answer - B
166.

If `sintheta+costheta=sqrt2costhetathen costheta-sintheta` is equal toA. `sqrt2cos theta`B. `sqrt2 sintheta`C. `sqrt2(cos theta+sintheta)`D. none of these

Answer» Correct Answer - B
167.

If `x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta)`is equal to`1+x`(b) `1-x`(c) `x`(d) `1/x`A. `1/a`B. aC. `1-a`D. `1+a`

Answer» Correct Answer - B
We have,
`a=(2sintheta)/(1+costheta+sintheta)`
`impliesa=(2sintheta(1+sintheta-costheta))/((1+costheta+sintheta)(1+sintheta-costheta))`
`impliesa=(2sintheta(1+sintheta-costheta))/((1+sintheta)^(2)-cos^(2)theta)`
`impliesa=(2sintheta(1+sintheta-costheta))/(2sintheta(1+sintheta))=(1+sintheta-costheta)/(1+sintheta)`
168.

If A and B are two angles satisfying `0ltA,Blt(pi)/(2)and A+B=(pi)/(3),` then the minimum value of `sec A+sec B` isA. `(2)/(sqrt3)`B. `(4)/(sqrt3)`C. `(1)/(sqrt3)`D. none of these

Answer» Correct Answer - B
`z=sec A+secB` will be minimum when `A=B=pi//6.`
`therefore` Minimum value of `z=cos (pi)/(6)+sec""(pi)/(6)=(4)/(sqrt3)`
169.

If `cos(theta - alpha) , costheta , cos(theta + alpha)` are in H.P. then `costheta.sec(alpha)/2 = `A. `sintheta=sqrt2cos((alpha)/(2))`B. `costheta=sqrt2cos((alpha)/(2))`C. `cos theta=sqrt2 sin((alpha)/(2))`D. `sintheta=sqrt2sin((alpha)/(2))`

Answer» Correct Answer - B
It is given that `cos (theta-alpha), cos theta and cos (theta+alpha)` are in H.P. Therefore,
`(2)/(cos theta)=(1)/(cos(theta-alpha))+(1)/(cos(theta+alpha))`
`implies(2)/(cos theta)=(2costhetacosalpha)/(cos^(2)theta-sin^(2)alpha)`
`cos^(2)theta(1-cosalpha)=sin^(2)alpha`
`cos theta=sqrt2cos""(alpha)/(2)`
170.

For what and only what values of `alpha` lying between `0 and pi/2` is the inequality is `sin alphacos^(3)alpha ltsin^(3) alpha cos alpha` valid?A. `alpha in(0,pi//4)`B. `alpha in(0,pi//2)`C. `alpha in(pi//4,pi//2)`D. none of these

Answer» Correct Answer - A
171.

If `x sintheta=ysin(theta+(2pi)/(3))=z sin(theta+(4pi)/(3)),` thenA. `x+y+z=0`B. `xy+yz+zx=0`C. `xyz+x+y+z=1`D. none of these

Answer» Correct Answer - B
We have,
`x sintheta=y sin(theta+(2pi)/(3))=zsin(theta+(4pi)/(3))`
`implies(sin theta)/(1/x)=(sin (theta+(2pi)/(3)))/(1/y)=(sin(theta+(4pi)/(3)))/(1/z)`
`=(sintheta)/(1/x)=(sin(theta+(2pi)/(3)))/(1/y)=(sin(theta+(4pi)/(3)))/(1/z)`
`=(sin theta+sin(theta+(2pi)/(3))+sin(theta+(4pi)/(3)))/(1/x+1/y+1/z)`
`implies(sintheta)/(1/x)=(sin(theta+(2pi)/(3)))/(1/y)=(sin(theta+(4pi)/(3)))/(1/z)`
`implies(sintheta)/(1/x)xx((1)/(x)+(1)/(y)+(1)/(z))=0`
`implies1/x+1/y+1/z=0impliesxy+yz+zx=0`
172.

If `2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma` are inA. A.P.B. G.P.C. H.P.D. none of these

Answer» Correct Answer - C
We have,
`2 sin alpha cos beta sin gamma=sinbeta sin(alpha+gamma)`
`implies2sinalpha cos betasingamma=sinalphasinbetacosgamma+cosalpha sinbetasingamma`
`implies2 cot alpha, cot beta, cot gamma` are in A.P.
`impliestan alpha, beta,tangamma` are in H.P.
173.

Given tan A and tan B are the roots of `x^2-ax + b = 0`, The value of `sin^2(A + B)` isA. `(a^(2))/(a^(2)+(1-b)^(2))`B. `(a^(2))/(a^(2)+b^(2))`C. `(a^(2))/((a+b)^(2))`D. `(a^(2))/(b^(2)+(1-a)^(2))`

Answer» Correct Answer - A
Since tan A and tan B are the roots of the equation `x^(2)-ax+b=0.` Therefore,
`tanA+tanB=aand tan A tanB=b`
`thereforetan(A+B)=(a)/(1-b)`
Now, `sin^(2)(A+B)=1/2[1-cos2(A+B)]`
`impliessin^(2)(A+B)=1/2{1-(1-tan^(2)(A+B))/(1+tan^(2)(A+B))}`
`impliessin^(2)(A+B)=1/2{1-(1-(a^(2))/((1-b)^(2)))/(1+(a^(2))/((1-b)^(2)))}`
`impliessin^(2)(A+B)=1/2{(2a^(2))/(a^(2)+(1-b)^(2))}=(a^(2))/(a^(2)+(1-b)^(2))`
174.

lf `cos 5theta-acos^5 theta + b cos^3 theta + c cos theta` then c is equal to-A. `-5`B. 1C. 5D. none of these

Answer» Correct Answer - C
We have,
`cos 5 theta+i sin5 theta=(cos theta+i sintheta)^(5)`
`=cos5 theta+isin5 theta`
`={""^(5)C_(0)0-""^(5)C_(2)cos^(3)thetasin^(2)theta+""^(5)C_(4)cos thetasin^(4)theta}`
`" "+i{""^(5)C_(1)cos^(4)thetasintheta-""^(5)C_(3)cos^(2)thetasin^(3)theta....}`
`impliescos 5 theta=cos^(5)theta-10cos^(3)thetasin^(2)theta+5 costhetasin^(4)theta`
`impliescos5 theta=cos^(5)theta-10cos^(3)theta(1-cos^(2)theta)+5costheta(1-cos^(2)theta)^(2)`
`impliescos5theta=16cos^(5)theta-20cos^(3)theta+5 cos theta`
`thereforec=5`
Differentiating with respect to `theta,` we get
`-5 sin5 theta=-5a cos^(4)thetasintheta-3bcos^(2)thetasintheta-csintheta`
Putting `theta=(pi)/(2),` we get `c=5.`
175.

If `tan x =(2b)/ (a- c)`, `y = acos^2 x + 2bsin x cos x + csin^2 x`, `z=asin^2 x-2b sin x cos x + c cos^2 x`, prove that `y-z=a-c`.A. `y=z`B. `y+z=a-c`C. `y-z=a-c`D. `(y-z)=(a-c)^(2)+4b^(2)`

Answer» Correct Answer - C
176.

If `sin alpha=sinbeta and cos alpha=cosbeta,` thenA. `sin""(alpha+beta)/(2)=0`B. `cos""(alpha+beta)/(2)=0`C. `sin""(alpha-beta)/(2)=0`D. `cos""((alpha-beta)/(2))=0`

Answer» Correct Answer - C
177.

If `xcosalpha+ysinalpha=xcosbeta+ysinbeta=2a` then `cosalpha cosbeta=`A. `(4ax)/(x^(2)+y^(2))`B. `(4a^(2)-y^(2))/(x^(2)+y^(2))`C. `(4ay)/(x^(2)+y^(2))`D. `(4a^(2)-x^(2))/(x^(2)+y^(2))`

Answer» Correct Answer - B
We have,
`x cos alpha+ysin alpha=xcos beta+y sinbeta=2a`
`impliesalpha,beta"are the roots of"x cos theta+y sintheta=2a.`
Now, `x costheta+ysin theta=2a`
`implies(xcostheta-2a)^(2)=y^(2)sin^(2)theta`
`impliesx^(2)cos^(2)theta-4axcos theta+4a^(2)-y^(2)(1-cos^(2)theta)`
`implies(x^(2)-y^(2))cos^(2)theta-4ax cos theta+4a^(2)-y^(2)=0`
Clearly, `cos theta, cos beta` are the roos of this equation.
`thereforecos alphacos beta=(4a^(2)-y^(2))/(x^(2)+y^(2))`
178.

If `tanalpha`is equal to the integral solution of the inequality `4x^2-16 x+15

Answer» Correct Answer - C
179.

If `sectheta=x+1/(4x),`then `s e ctheta+t a ntheta=``x ,1/x`(b) `2x ,1/(2x)`(c) `-2x ,1/(2x)`(d) `-1/x ,x`A. `x,(1)/(x)`B. `2x,(1)/(x)`C. `-2x,(1)/(x)`D. `-(1)/(x),x`

Answer» Correct Answer - B
180.

If `cos(A-B)=3/5and tan A tanB=2,` thenA. `cosAcosB=1/5`B. `sinAsinB=-2/5`C. `cos(A+B)=-1/5`D. none of these

Answer» Correct Answer - A
181.

If `sinx+cosx=1/5,0lexlepi,` then tan x is equal toA. `-4/3or, -3/4`B. `3/4`C. `4/5`D. none of these

Answer» Correct Answer - A
We have,
`sinx+2x=1/5`
`implies1+sin2x=1/25" "["On squaring both sides"]`
`implies1+(2tanx)/(1+tan^(2)x)=1/25`
`implies12tan^(2)x+25tanx+12=0`
`implies(4tanx+3)(3tanx+4)=0impliestanx=-3/4or, tanx=-4/3`
182.

if `0

Answer» Correct Answer - A
183.

The Minimum value of `27^cosx +81^sinx` is equal toA. `(2)/(3sqrt3)`B. `(2)/(9sqrt3)`C. `(4)/(3sqrt3)`D. none of these

Answer» Correct Answer - B
We known that
`A.M. ge G.M.`
`therefore(27^(cosx)x+81^(sinx))/(2)gesqrt(27^(cosx)xx81^(sinx))`
`implies27^(cosx)+81^(sinx)ge2sqrt(3^(3cosx+4sinx))`
`implies27^(cosx) +81^(sinx)ge2xxsqrt(3^(-5))`
`" "[because-5le3cosx+4sinxle5]`
`implies27^(cosx)+81^(sinx)ge(2)/(9sqrt3)`
Hence, the minimum value of `27^(cosx)+81^(sinx)is(2)/(9sqrt3).`