

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
151. |
If $\frac{sin\theta + cos\theta}{sin\theta - cos\theta}$ = $\frac{5}{4}$, then the value of $\frac{tan^{2}\theta + 1}{tan^{2}\theta - 1}$ is:1). $\frac{25}{16}$2). $\frac{41}{9}$3). $\frac{41}{40}$4). $\frac{40}{41}$ |
Answer» OPTION 3 : - $\FRAC{41}{9}$ | |
152. |
If $sec\theta - cos\theta$ = $\frac{3}{2}$where $\theta$ is a positive acute angle, then the value of $sec\theta$ is1). $-\frac{1}{2}$2). 13). 24). 0 |
Answer» | |
153. |
If sec x + cos x = 2, then the value of $sec^{16}x + cos^{16}x$ will be1). $\sqrt{3}$2). 23). 14). 0 |
Answer» 2 is the BEST SUITED | |
154. |
From a point P on the ground the angle of elevation of the top of a 10 m tall building is $30^{0}$. A flag Is hoisted at the top of the buildingand the angle of elevation of the top of the flagstaff from P is$45^{0}$. Find the length of the flagstaff. (Take $\sqrt{3}$ = 1.732)1). $10(\sqrt{3}+2)$ m2). $10(\sqrt{3}+1)$ m3). $10\sqrt{3}$ m4). 7.32 m |
Answer» OPTION 4 : SEEMS CORRECT | |
155. |
If $\frac{cos\alpha}{cos\beta}$ = a and $\frac{sin\alpha}{sin\beta}$ = b , then the value of $sin^{2}\beta$ is equal to1). $\frac{a^{2}-1}{a^{2}+b^{2}}$2). $\frac{a^{2}+1}{a^{2}-b^{2}}$3). $\frac{a^{2}-1}{a^{2}-b^{2}}$4). $\frac{a^{2}+1}{a^{2}+b^{2}}$ |
Answer» OPTION option 3 is the CORRECT ANSWER | |
156. |
If $cosec\theta - cot\theta$ = $\frac{7}{2}$ , the value of $cosec\theta$ is :1). $\frac{47}{28}$2). $\frac{51}{28}$3). $\frac{53}{28}$4). $\frac{49}{28}$ |
Answer» | |
157. |
If $sec^{2}\theta + tan^{2}\theta$ = $\frac{7}{12}$,then $sec^{4}\theta - tan^{4}\theta $ =1). $\frac{7}{12}$2). $\frac{1}{2}$3). $\frac{5}{12}$4). 1 |
Answer» | |
158. |
$sin^{2}\theta - 3sin\theta + 2$ = 0 will be true if1). $0 \leq \theta < 90$2). $0 < \theta < 90$3). $\theta$ = $0^{0}$4). $\theta$ = $90^{0}$ |
Answer» | |
159. |
The value of $cot10^{0}.cot 20^{0}.cot60^{0}.cot70^{0}.cot80^{0}$ is1). 12). -13). $\sqrt{3}$4). $\frac{1}{\sqrt{3}}$ |
Answer» ANSWER for this QUESTION is OPTION 4 | |
160. |
If $sin(3\alpha-\beta)$ = 1 and $cos(2\alpha+\beta)$ = $\frac{1}{2}$ , then the value of $tan\alpha$ is1). 02). $\frac{1}{\sqrt{3}}$3). 14). $\sqrt{3}$ |
Answer» it from previous year SSC PAPERS, option 2 is the RIGHT answer |
|
161. |
The value of $tan1^{0} tan2^{0} tan3^{0}.......... tan89^{0}$ is :1). 12). 03). $\sqrt{3}$4). $\frac{1}{\sqrt{3}}$ |
Answer» CORRECT ANSWER is: OPTION 1 | |
162. |
If $cos x + cos^{2}x$ = 1, then $sin^{8}x + 2 sin^{6}x + sin^{4}x$ is equal to1). 02). 33). 24). 1 |
Answer» OPTION 4 : - 1 | |
163. |
If $1 + cos^{2}\theta$ = $3 sin\theta cos\theta$ , then the integral value of $cot\theta$ ($(0 < \theta < \frac{\pi}{2})$ is1). 12). 23). 04). 3 |
Answer» OPTION 1 is the ANSWER | |
164. |
If $\theta +\phi$ = $\frac{\pi}{2}$ and $sin\theta$ = $\frac{1}{2}$ ,then the value of $sin\phi$ is1). 12). $\frac{1}{\sqrt{2}}$3). $\frac{1}{2}$4). $\frac{\sqrt{3}}{2}$ |
Answer» | |
165. |
If $x sin45^{0}$ = $y cosec30^{0}$, then $\frac{x^{4}}{y^{4}}$ is equal to1). $4^{3}$2). $6^{3}$3). $2^{3}$4). $8^{3}$ |
Answer» it from previous YEAR ssc PAPERS, option 1 is the right answer |
|
166. |
If $\alpha+\beta$ = $90^{0}$, then the value of $(1 - sin^{2}\alpha)(1 - cos^{2}\alpha)\times ( l + cot^{2}\beta)(1 + tan^{2}\beta)$ is1). 12). -13). 04). 2 |
Answer» RIGHT ANSWER for this QUESTION is OPTION 1 | |
167. |
If $x sin60^{0}.tan30^{0}$ = $sec60^{0}.cot45^{0}$ , then the value of x is1). 22). $2\sqrt{3}$3). 44). $4\sqrt{3}$ |
Answer» OPTION option 3 is the CORRECT ANSWER | |
168. |
A vertical post 15 ft high is broken at a certain height and its upper part not completely separated, meets the ground at an angle of $30^{0}$. Find the height at which the post is broken.1). 10 ft2). 5 ft3). $15\sqrt{3}(2- \sqrt{3})$ ft4). $5\sqrt{3}$ ft |
Answer» 5 FT is the ANSWER | |
169. |
If x = $a sec\theta$, y = $b tan\theta$, then $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$ is1). -12). 03). 14). 2 |
Answer» it from previous year ssc PAPERS, option 3 is the RIGHT answer |
|
170. |
The elevation of the top of a tower from a point on the ground is $45^{0}$ . On travelling 60m from the point towards the tower, the elevation of the top becomes $60^{0}$. The height of the tower ( in metres ) is1). 302). $30(3-\sqrt{3})$3). $30(3+\sqrt{3})$4). $30\sqrt{3}$ |
Answer» | |
171. |
If $tan\theta + cot\theta$ = 2 then the value of $\theta$is1). $45^{0}$2). $60^{0}$3). $90^{0}$4). $30^{0}$ |
Answer» OPTION 1 : - $45^{0}$ | |
172. |
The angle of elevation of the top of a tower from two points A and B lying on the horizontal through the foot of the tower are respectively $15^{0}$ and $30^{0}$ . If A and B are on the same side of the tower and AB 48 metre, then the height of the tower is :1). $24\sqrt{3}$ metre2). 24 metre3). $24\sqrt{2}$ metre4). 96 metre |
Answer» ANSWER for this QUESTION is 24 METRE | |
173. |
If $\frac{sec\theta + tan\theta}{sec\theta - tan\theta}$ = $2\frac{51}{79}$ then the value of $sin\theta$ is1). $\frac{39}{72}$2). $\frac{65}{144}$3). $\frac{35}{72}$4). $\frac{91}{144}$ |
Answer» This question was asked some where in PREVIOUS year PAPERS of ssc, and correct ANSWER was $\frac{65}{144}$ |
|
174. |
If $tan\theta$ = $\frac{3}{4}$ and $\theta$ is acute ,then $cosec\theta$1). $\frac{4}{5}$2). $\frac{5}{3}$3). 24). $\frac{1}{2}$ |
Answer» CORRECT ANSWER is: OPTION 2 | |
175. |
Maximum value of $(2 sin\theta + 3 cos\theta)$ is1). 22). $\sqrt{13}$3). $\sqrt{15}$4). 1 |
Answer» | |
176. |
Find the value of $tan 4^{0}tan 43^{0}tan 47^{0}tan 86^{0}$1). $\frac{2}{3}$2). 13). $\frac{1}{2}$4). 2 |
Answer» OPTION 2 is the RIGHT ONE | |
177. |
If $sec\theta + tan\theta$ = 2, then the value of $sec\theta $ is1). $\frac{4}{5}$2). 53). $\frac{5}{4}$4). $\sqrt{2}$ |
Answer» | |
178. |
If $cosec\theta- sin\theta$ = $\ell$ and $sec\theta - cos\theta$ = m, then the value of $\ell^{2}m^{2}(\ell^{2}+m^{2}+3)$ isis1). -12). 03). 14). 2 |
Answer» This QUESTION was asked some where in previous year papers of ssc, and CORRECT answer was OPTION 3 |
|
179. |
If $cos\theta $ = $\frac{p}{\sqrt{p^{2} + q^{2}}}$ ,then the value of $tan\theta $ is :1). $\frac{q}{\sqrt{p^{2} - q^{2}}}$2). $\frac{q}{p}$3). $\frac{p}{p^{2} + q^{2}}$4). $\frac{q}{\sqrt{p^{2} + q^{2}}}$ |
Answer» | |
180. |
If $\frac{sin\theta + cos\theta}{sin\theta - cos\theta}$ = 3 then the value of $sin^{4}\theta$ is :1). $\frac{2}{5}$2). $\frac{1}{5}$3). $\frac{4}{5}$4). $\frac{3}{5}$ |
Answer» $\frac{sin\theta+cos\theta}{sin\theta-cos\theta}$ = $\frac{1}{3}$ $\frac{sin\theta+cos\theta+sin\theta-cos\theta}{sin\theta+cos\theta-sin\theta+cos\theta}$ = $\frac{3+1}{3-1}$ $\frac{2sin\theta}{2cos\theta}$ = $\frac{4}{2}$ => tan$\theta$= 2 $\therefore$ COT$\theta$ = $\frac{1}{2}$ $\therefore$ cosec $\theta$ =$\sqrt{1+\frac{1}{4}}$ $\therefore$ sin $\theta$ = $\frac{2}{\sqrt{5}}$ sin4$\theta$ = $\frac{16}{25}$ . |
|
181. |
If $2sin\left(\frac{\pi x}{2}\right)$ = $x^{2} +\frac{1}{x^{2}}$ , then the value of $\left(x- \frac{1}{x}\right)$ is1). -12). 23). 14). 0 |
Answer» it from previous year SSC PAPERS, OPTION 4 is the RIGHT answer |
|
182. |
The angle of elevation of the top of a building and the top of the chimney on the roof of the building from a point on the ground are x and $45^{0}$ respectively. The height of building is h metre. Then the height of the chimney, (in metre) is :1). h cot x + h2). h cot x - h3). h tan x - h4). h tan x +h |
Answer» HELLO, H COT X - h is CORRECT | |
183. |
If $tan7\theta tan2\theta$ = l, then the value of $tan3\theta$ is1). $\sqrt{3}$2). $-\frac{1}{\sqrt{3}}$3). $\frac{1}{\sqrt{3}}$4). $-\sqrt{3}$ |
Answer» | |
184. |
The two banks of a canal are straight and parallel. A, B, C are three persons of whom A stands on one bank and B and C on the opposite banks. B finds the angle ABC is $30^{0}$.while C finds that the angle ACB $60^{0}$. If B and C are 100 metres apart, the breadth of the canal is1). $\frac{25}{\sqrt{3}}$ metres2). $20\sqrt{3}$ metres3). $25\sqrt{3}$ metres4). $\frac{20}{\sqrt{3}}$ metres |
Answer» | |