Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

The degree measure of 1 radian (taking $\pi$ = $\frac{22}{7}$) is1). $57^{0}61'22"$ (approx)2). $57^{0}16'22"$ (approx)3). $57^{0}22'16"$ (approx)4). $57^{0}32'16"$ (approx)

Answer»

$57^{0}16'22"$ (APPROX) SEEMS CORRECT.

102.

Value of the expression : $\frac{1 + 2 sin 60^{0} cos 60^{0}}{sin 60^{0}+ cos 60^{0}} + \frac{1 - 2 sin 60^{0} cos 60^{0}}{sin 60^{0}- cos 60^{0}}$ is :1). $2\sqrt{3}$2). 03). $\sqrt{3}$4). 2

Answer» OPTION 3 is the RIGHT ONE
103.

If $7 sin^{2}\theta + 3 cos^{2}\theta$ = 4, $(0^{0} < \theta < 90^{0})$, then the value of $tan\theta$ is1). $\frac{1}{\sqrt{3}}$2). $\frac{1}{2}$3). 14). $\sqrt{3}$

Answer» RIGHT ANSWER for this question is $\frac{1}{\SQRT{3}}$
104.

The value of $\frac{1}{cosec\theta-cot\theta}-\frac{1}{sin\theta}$ is1). 12). $cot\theta$3). $coses\theta$4). $tan\theta$

Answer» OPTION 2 is the RIGHT ANSWER
105.

The value of $tan 4^{0}.tan 43^{0}.tan 47^{0}.tan 86^{0}$ is1). 22). 33). 14). 4

Answer» 3 is the ANSWER
106.

If $cot\theta.coeec23^{0}$ = 1, the value of $\theta$ is1). $23^{0}$2). $37^{0}$3). $63^{0}$4). $67^{0}$

Answer» CORRECT ANSWER is: OPTION 4
107.

TF is a tower with F on the ground. The angle of elevation of T from A is$x^{0}$ such that $tanx^{0}$ = $\frac{2}{5}$ and AF = 200m.The angle of elevation of T from a nearer point B is $y^{0}$ with BF = 80m. The value of $y^{0}$ is1). $60^{0}$2). $30^{0}$3). $75^{0}$4). $45^{0}$

Answer» OPTION 4 : - $45^{0}$
108.

If $sin\theta + cos\theta$ = p and $sec\theta + cosec\theta$ = q , then the value of $q(p^{2} - 1)$ is1). 12). p3). 2p4). 2

Answer» P
109.

If $\theta$ is an acute angle and $tan^{2}\theta + \frac{1}{tan^{2}\theta}$ = 2,then the value of $\theta$ is :1). $60^{0}$2). $45^{0}$3). $15^{0}$4). $30^{0}$

Answer»

$45^{0}$

110.

In $\triangle ABC$, $\angle C$ = $90^{0}$ and AB = c, BC = a, CA = b; then the value of (cosec B - cos A) is1). $\frac{c^{2}}{ab}$2). $\frac{b^{2}}{ca}$3). $\frac{a^{2}}{bc}$4). $\frac{bc}{a^{2}}$

Answer» ANSWER for this QUESTION is OPTION 3
111.

The value of the following is : $3(sin^{4}\theta + cos^{4}\theta) + 2(sin^{6}\theta + cos^{6}\theta) + 12 sin^{2}\theta cos^{2}\theta$1). 02). 33). 24). 5

Answer»

I have READ it SOMEWHERE 5 is CORRECT

112.

The angle of elevation of a tower from a distance of 100 metre from its foot is $30^{0}$. Then the height of the tower is1). $50\sqrt{3}$ metre2). $100\sqrt{3}$ metre3). $\frac{50}{\sqrt{3}}$ metre4). $\frac{100}{\sqrt{3}}$ metre

Answer»

This question was ASKED some where in PREVIOUS YEAR papers of ssc, and correct ANSWER was option 4

113.

a, b, c are the lengths of three sides of a triangle ABC. If a, b, c are related by the relation $a^{2}+b^{2}+c^{2}$ =ab + bc + ca, then the value of $sin^{2}A + sin^{2}B + sin^{2}C$ is1). $\frac{3}{4}$2). $\frac{3\sqrt{3}}{2}$3). $\frac{3}{2}$4). $\frac{9}{4}$

Answer» RIGHT ANSWER is $\FRAC{9}{4}$
114.

The length of the shadow of a vertical tower on level ground increases by 10 metres when the altitude of the sun changes from $45^{0}$ to $30^{0}$ . Then the height of the tower is1). $5\sqrt{3}$ metre2). $10(\sqrt{3}+1)$ metre3). $5(\sqrt{3}+1)$ metre4). $10\sqrt{3}$ metre

Answer»

$10(\sqrt{3}+1)$ METRE is the best SUITED

115.

There are two temples, one on each bank of a river.Just opposite to each other. One temple is 54m high. From the top of this temple, the angles of depression of the top and the foot of the other temple are $30^{0}$ and $60^{0}$ respectively.The length of the temple is :1). 18 m2). 36 m3). $36\sqrt{3}$ m4). $18\sqrt{3}$ m

Answer»

is 36 m is the CORRECT ANSWER am i RIGHT

116.

In circular measure,the value of angle $11^{0}15'$ is1). $\frac{\pi^{c}}{16}$2). $\frac{\pi^{c}}{8}$3). $\frac{\pi^{c}}{4}$4). $\frac{\pi^{c}}{12}$

Answer»

$\FRAC{\pi^{c}}{16}$ : OPTION 1 is the correct ANSWER

117.

If $sin\theta + sin^{2}\theta$ = 1 then $cos^{2}\theta + cos^{4}\theta$ is equal to1). None2). 13). $\frac{sin\theta}{cos^{2}\theta}$4). $\frac{cos^{2}\theta}{sin\theta}$

Answer» RIGHT ANSWER for this QUESTION is 1
118.

If $7sin\alpha$ = $24cos\alpha$ : $0 < \alpha < \frac{\pi}{2}$, then the value $14tan\alpha-75cos\alpha - 7sec\alpha$ is equal to1). 32). 43). 14). 2

Answer» 2 is the correct ANSWER as per the SSC answer KEY
119.

If $cos\theta + sec\theta$ = 2, the value of $cos^{6}\theta + sec^{6}\theta $ is1). 42). 83). 14). 2

Answer» HELLO, 2 is CORRECT
120.

If x = $a (sin\theta + cos\theta)$ and y = $b (sin\theta - cos\theta)$, then the value of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ is:1). 42). 33). 14). 2

Answer» OPTION 4 is the RIGHT ANSWER
121.

If $tan\theta + cot\theta$ = 2, then the value of $tan^{100}\theta + cot^{100}\theta$ is1). 22). 03). 14). $\sqrt{3}$

Answer»

I THINK OPTION 1 is the RIGHT ANSWER

122.

If a $\triangle ABC$ ,$\angle B$ = $\frac{\pi}{3}$ ,$\angle C$ = $\frac{\pi}{4}$ ,and D divides BC internally in the ratio 1 : 3 then $\frac{sin\angle BAD}{sin\angle CAD}$ to equal to1). $\frac{1}{\sqrt{2}}$2). $\frac{1}{\sqrt{3}}$3). $\frac{1}{\sqrt{6}}$4). $\sqrt{6}$

Answer» OPTION 3 is the RIGHT ANSWER
123.

The minimum value of $4 tan^{2}\theta + 9 cot^{2}\theta$is equal to1). 02). 53). 124). 13

Answer» 5 : OPTION 3 is the CORRECT ANSWER
124.

If sin(A + B) = sin A cos B + cos A sin B, then the value of $sin 75^{0}$is1). $\frac{\sqrt{3}+1}{\sqrt{2}}$2). $\frac{\sqrt{2}+1}{2\sqrt{2}}$3). $\frac{\sqrt{3}+1}{2\sqrt{2}}$4). $\frac{\sqrt{3}+1}{2}$

Answer»

right ANSWER is $\frac{\sqrt{2}+1}{2\sqrt{2}}$

125.

If $2cos\theta - sin\theta$ = $\frac{1}{\sqrt{2}}$ , $(0^{0} < \theta

Answer»

$\SQRT{2}$ : SEEMS CORRECT

126.

The length of the shadow of a vertical tower on level ground increases by 10 metres when the altitude of the sun changes from $45^{0}$ to $30^{0}$ . Then the height of the tower is1). $5(\sqrt{3}+ 1)$ metres2). $5(\sqrt{3}- 1)$ metres3). $5\sqrt{3}$ metres4). $\frac{3}{\sqrt{3}}$ metres

Answer»

This QUESTION was asked some where in previous YEAR PAPERS of ssc, and CORRECT answer was option 1

127.

If $sin\theta + cosec\theta$= 2, then the value of $sin^{5}\theta + cosec^{5}\theta$ when $0^{0}\theta \theta \theta 90^{0}$, to1). 02). 13). 104). 2

Answer» 2 is the correct ANSWER as per the SSC answer key
128.

The value of $(2cos^{2}\theta-1)\left(\frac{1 + tan\theta}{1 - tan\theta}+\frac{1 - tan\theta}{1 + tan\theta}\right)$1). 42). 13). 34). 2

Answer» 2 : - is CORRECT HENCE OPTION 4
129.

If $sin\theta + cos\theta$ = $\sqrt{2}sin(90^{0} - 0)$, then the value of $cot\theta$ is1). $-\sqrt{2}-1$2). $\sqrt{2}-1$3). $\sqrt{2}+1$4). $-\sqrt{2}+1$

Answer»

i THINK OPTION 3 is CORRECT

130.

If tan x = $sin 45^{0}.cos 45^{0} + sin 30^{0}$ ,then the value of x is1). $30^{0}$2). $45^{0}$3). $60^{0}$4). $90^{0}$

Answer»

I have READ it SOMEWHERE $45^{0}$ is CORRECT

131.

If $sin\theta - cos\theta$ = $\frac{7}{13}$ and $0 < \theta < 90^{0} $, then the value of $sin\theta + cos\theta$ is1). $\frac{17}{13}$2). $\frac{13}{17}$3). $\frac{1}{13}$4). $\frac{1}{17}$

Answer»

$\frac{17}{13}$ is the correct answer as PER the SSC answer KEY

132.

The valueof $\frac{cot30^{0} - cot75^{0}}{tan15^{0} - tan60^{0}}$is equal to1). -12). 03). 14). 2

Answer» ANSWER for this QUESTION is -1
133.

If $7sin^{2}\theta + 3cos^{2}\theta$ = 4, then the value of $tan\theta$ is ($\theta$ is acute)1). $\frac{1}{\sqrt{3}}$2). $\frac{1}{\sqrt{2}}$3). $\sqrt{3}$4). 1

Answer»

This question was asked some where in previous year papers of SSC, and CORRECT ANSWER was option 1

134.

The value of $\theta$, which satisfies the equation $tan^{2}\theta + 3$ = $3 sec\theta$,$0^{0} < \theta < 90^{0}$ is1). $15^{0}$or $0^{0}$2). $30^{0}$or $0^{0}$3). $45^{0}$or $0^{0}$4). $60^{0}$or $0^{0}$

Answer»

Its very simple QUESTION $60^{0}$or $0^{0}$ is the correct ANSWER.

135.

The simplified value of $(sec x sec y + tan x tan y)^{2} - (sec x tan y + tan x sec y)^{2}$ is :1). -12). 03). $sec^{2}x$4). 1

Answer»

I am not SURE, MAY be 1 is CORRECT

136.

The value of $(cosec\alpha - sin\alpha ) (sec\alpha- cos\alpha) (tan\alpha + cot\alpha)$ is1). 12). 63). 24). 4

Answer» 1 : - is CORRECT HENCE OPTION 1
137.

The value of the expression $sin^{2}1^{0}+sin^{2}11^{0}+sin^{2}21^{0}+sin^{2}31^{0}+sin^{2}41^{0}+sin^{2}45^{0}+sin^{2}49^{0}+sin^{2}59^{0}+sin^{2}69^{0}+sin^{2}79^{0}+sin^{2}89^{0}$is :1). 02). $5\frac{1}{2}$3). 54). $4\frac{1}{2}$

Answer» RIGHT ANSWER is $5\frac{1}{2}$
138.

The minimum value of $2sin^{2}\theta + 3cos^{2}\theta$ is1). 32). 43). 24). 1

Answer»

This question was asked some where in previous year PAPERS of SSC, and correct ANSWER was option 3

139.

If $0^{0} < A < 90^{0}$, the value of $\frac{tan A - sec A -1}{tan A + sec A +1}$ is1). $\frac{sin A -1}{cos A}$2). $\frac{1- sin A}{cos A}$3). $\frac{1-cos A}{sin A}$4). $\frac{sinA + 1}{cos A}$

Answer» RIGHT ANSWER is $\FRAC{SIN A -1}{COS A}$
140.

The value of $tan 11^{0} tan 17^{0} tan 79^{0} tan 73^{0}$is1). $\frac{1}{2}$2). 03). 14). $\frac{1}{\sqrt{2}}$

Answer»

I THINK OPTION 3 is the RIGHT ANSWER

141.

If $cos^{4}\theta - sin^{4}\theta$= $\frac{2}{3}$, then the value of $1 - 2 sin^{2}\theta$ is1). $\frac{2}{3}$2). $\frac{3}{2}$3). 14). 0

Answer»

This question was asked some where in previous year PAPERS of SSC, and CORRECT ANSWER was OPTION 1

142.

If $sin\alpha sec(30^{0}+ \alpha)$ = 1, $(0 < \alpha < 60^{0})$, then the value of $sin\alpha + cos2\alpha$ is1). 12). $\frac{2+\sqrt{3}}{2\sqrt{3}}$3). 04). $\sqrt{2}$

Answer» 1 : - is CORRECT HENCE OPTION 1
143.

$\left(\frac{3\pi}{5}\right)$ radians is equal to1). $100^{0}$2). $120^{0}$3). $108^{0}$4). $180^{0}$

Answer» ANSWER for this QUESTION is $120^{0}$
144.

If $sin\theta + coses\theta$ = 2, then the value of $sin^{9}\theta + cosec^{9}\theta$ is :1). 32). 23). 44). 1

Answer»

is OPTION 2 is the CORRECT ANSWER am i RIGHT

145.

The ratio of the length of a rod and its shadow is 1 :$\sqrt{2}$. The angle of elevation of the sun is :1). $90^{0}$2). $30^{0}$3). $45^{0}$4). $60^{0}$

Answer»

This QUESTION was ASKED some where in previous year papers of SSC, and correct ANSWER was OPTION 2

146.

The shadow of a tower is $\sqrt{3}$ times its height. Then the angle of elevation of the top of the tower is1). $45^{0}$2). $30^{0}$3). $60^{0}$4). $90^{0}$

Answer»

i THINK OPTION 2 is CORRECT

147.

If $x cos^{2}30^{0}. sin 60^{0}$ = $\frac{tan^{2}45^{0}. sec 60^{0}}{cosec60^{0}}$ then the value of x is1). $\frac{1}{\sqrt{3}}$2). $\frac{1}{\sqrt{2}}$3). $2\frac{2}{3}$4). $\frac{1}{2}$

Answer»

$\FRAC{1}{\SQRT{2}}$

148.

If $tan(5x - 10^{0})$ = $cot(5y + 20^{0})$, the value of (x +y ) is1). $15^{0}$2). $16^{0}$3). $24^{0}$4). $20^{0}$

Answer» OPTION 2 : - $16^{0}$
149.

The angle of elevation of sun changes from $30^{0}$ to $45^{0}$, the length of the shadow of a pole decreases by 4 metres, the height of the pole is (Assume $\sqrt{3}$ = 1.732)1). 1.464 m2). 9.464 m3). 3.648 cm4). 5.464 m

Answer»

i THINK OPTION 4 is CORRECT

150.

The numerical value of $\left(\frac{1}{cos\theta}+\frac{1}{cot\theta}\right)\left(\frac{1}{cos\theta}-\frac{1}{cot\theta}\right)$1). 02). -13). +14). 2

Answer»

I THINK -1 is RIGHT