InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
Find the following integrals: (i)`int_(1)^(9)(dx)/(sqrt(x))" "` (ii) `int_(1)^(3)12x^(3)dx " "` (iii) `int_(4)^(16) sqrt(t).dt` |
|
Answer» Correct Answer - (i) `4` ,(ii) `240` ,(iii)`(112)/(3)` (i) `underset(1)overset(9)int(dx)/(sqrt(x))=((sqrt(x))/(-1/2+1))_(1)^(4)=2(sqrt(9-sqrt(1)))=4` (ii)`underset(1)overset(3)int12x^(3)dx=12underset(1)overset(3)intx^(3)dx=12((x^(4))/(4))_(1)^(3)=240` (iii)`underset(4)overset(16)intsqrt(t)dt=(2)/(3)(t^(3//2))_(4)^(16)=(112)/(3)` |
|
| 52. |
Find value of `sqrt(101)` |
|
Answer» Correct Answer - `10.05` `sqrt(101)=(100+1)^(1//2)` `10(1+(1)/(100))^(1//2)` `=10(1+0.01)^(1//2)` `~= 10(1+(0.01)/(2))` `=10(1+0.005)` `=10.05` |
|
| 53. |
Find the equation of trajectory of a particle whose velocity components are `v_(x)=2x+1, v_(y)=2y+3` Given that particle starts from rest from origin. |
|
Answer» `v_(x)=2x+1`, `(dx)/(dt)=2x+1` `int_(0)^(x) (dx)/(2x+1)=int_(0)^(t)dt` `(1)/(2)ln(2x+1)=t " "` ....(1) `v_(y)=2y+3` `int _(0)^(y)(dy)/(2y+3)=int_(0)^(t)dt` `(1)/(2) "ln "((2y+3))/(3)=t" "` ...(2) from (1) and (2) `(1)/(2) ln (2x+1)=(1)/(2) "ln" ((2y+3))/(3)` `2x+1=((2y+3))/(3)` `y=3x` |
|
| 54. |
If `vec(r)=[ucos theta(hat(i))+u sin theta(hat(j))]t+(1)/(2)g(-hat(j))t^(2)` then calculate equation of trajectory. |
|
Answer» `x=u cos theta t` & `y=u sin theta t-(1)/(2)g t^(2)` `y=usintheta ((x)/(u)cos theta)-(1)/(2)g((x)/(u cos theta))^(2)` `y=x tan theta-(gx^(2))/(2u^(2)cos^(2) theta)` |
|
| 55. |
A body is moving vertically upwards under gravity such that its position from ground is given as `y=ut-(1)/(2)g t^(2)` . Find the max height reached by body. |
|
Answer» `(dy)/(dt)=u-g t=0 ,t=(u)/(g)` `(d^(2)y)/(dx^(2))=-glt0` (which is negative). So we get maximum height`y_(max)at" " t=(u)/(g)sec`. `y_(max)=u((u)/(g))-(1)/(2)g((u)/(g))^(2)` `(u^(2))/(2g)` |
|
| 56. |
Find a vector `vec(F)` of magnitude 50N parallel to `-4hat(i)+3hat(j)`. |
| Answer» `vec(F)=50xx((-40hat(i)+3hat(j)))/(5)=-40hat(i)+30hat(j)` | |
| 57. |
A particle is moving with speed 6m/s along the direction of `2hat(i)+2hat(j)-hat(k)` find the velocity vector of a particle ? |
| Answer» `vec(v)=|vec(v)|hat(v)=6((2hat(i)+2hat(j)-hat(k)))/(3)=2(2hat(i)+2hat(j)-hat(k))` | |
| 58. |
Find the derivative of `y(x)=x^(3)//(x+1)^(2)` with respect to x . |
|
Answer» We can rewrite this function as `y(x)=x^(3)(x+1)^(-2)`and apply Equation() `(dy)/(dx)=(x+1)^(-2) (d)/(dx)(x^(3))+x^(3)(d)/(dx)(x+1)^(-2)` `=(x+1)^(-2)3x^(2)+x^(3)(-2)(x+1)^(-3)` `(dy)/(dx)=(3x^(2))/((x+1)^(2))-(2x^(3))/((x+1)^(3))` |
|